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Abstract

Growth responses of the moderately salt-tolerant velvet ash (Fraxinus velutina) and salt-sensitive poplar (Populus x
euramericana) were investigated under heterogeneous root zone salinity. The salinity treatments imposed on the two
root zones (lower-higher) were 137-137 (uniform), 103-171, 68-205, 34-239, and 0-273 mM NacCl for velvet ash, and
51-51 (uniform), 34-68, 17-85, and 0-103 mM NacCl for poplar. The leaf gas exchange of the plants was measured one
month after these treatments were implemented, and the plants were sampled 75 d after treatment to measure other
physiological parameters. Net photosynthetic rate, transpiration rate, total biomass, and fine root compensatory growth
increased as the difference in salinity between the two root zones (i.e., salinity heterogeneity) increased in velvet ash.
These parameters showed no significant difference among the treatments in poplar. The leaf Na* content was lower
under heterogeneous salinity than under uniform salinity in both tested species. The leaf proline content in velvet ash
decreased under heterogeneous salinity compared to that under uniform salinity, whereas that of poplar increased. The
soluble sugar content of velvet ash leaves increased under heterogeneous salinity, whereas no changes were observed in
poplar. The increased fine root biomass in the lower salinity zone promoted velvet ash growth by decreasing the leaf
Na" and CI content under heterogeneous salinity. The poplar’s undifferentiated root distribution and gas exchange in
response to the heterogeneous salinity were attributed to its salt sensitivity.
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Studies on plant salt tolerance have been widely
conducted. Most of these studies were performed under
uniform salinity. However, the spatial distribution of salts
in the soil is highly variable (Bazihizina et al. 2012a,b).
There may be a high variation in salinity even in the
rhizosphere of a single plant (Li et al. 2011). Therefore,
studies on growth responses to heterogeneous salinity are
essential for understanding plant growth under natural
saline conditions. Studies on moderately salt-tolerant
crops, such as tomato (Mulholland ef al. 2002), cotton

(Dong et al. 2010, Kong et al. 2012) and alfalfa (Sun
et al. 2016), have shown that plant growth under
heterogeneous salinity is more dependent on the lowest
rather than on the highest salinity level in the root zone,
even when the mean salinity is the same. However, in
extremely salt-tolerant or salt-sensitive plants, the
responses are different from those of moderately salt-
tolerant plants. The halophyte Atriplex nummularia
shows similar growth under uniform and heterogeneous
salinity (Bazihizina et al. 2012b). The growth of a salt-
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sensitive species Capsicum annuum with one half of the
roots subjected to non-saline conditions depended on the
highest salinity around the second root half (Lycoskoufis
et al. 2005). Cucumber, which is also a salt-sensitive
species, had the same yield under heterogeneous and
uniform salinity treatments (Mulholland et al. 2002).
These results indicate that the growth responses of
different plants to heterogeneous salinity are species
specific.

Improvement in the growth of plants under
heterogeneous salinity was found to be related to the
distribution of roots. More roots in lower-salinity zones
improves water absorption by plants (Shani ez al. 1993,
Bazihizina et al. 2009, Sun et al. 2016). Bazihizina
(2009) reported that leaf water potential is negatively
correlated with lower salinity in a heterogencous root
zone. The increase in biomass and yield in the
heterogeneous salinity treatment compared to that under
uniform salinity can be due to increased gas exchange
(Dong et al. 2010, Kong et al. 2012) and decreased leaf
Na' content (Sun et al. 2016). Heterogeneous salinity
leads to lower Na' accumulation in cotton leaves
compared to that under uniform salinity (Kong et al.
2012). The backward transportation of Na' from the
leaves to the roots occurs when half of the roots
experienced non-saline conditions (Kong ef al. 2012, Sun
et al. 2016). However, little is known about CI', proline,
and soluble sugar accumulation in plants under
heterogeneous salinity, which are important responses of
plants to salinity.

Tree species, which have large roots, are expected to
be greatly affected by heterogeneous salinity. In addition,
previous studies, which have been based on single
species, provide no information on growth differences
among trees with different salt tolerance. In the present
study, we selected two tree species, moderately salt
tolerant velvet ash (Fraxinus velutina Torr.; Du et al.,
2013), and salt sensitive hybrid poplar (Populus x
euramericana Guinier; Sixto et al. 2005, Chen and Polle
2010) to compare their growth and physiological
responses to heterogeneous salinity.

The velvet ash seedlings were grown in tissue culture,
and cuttings from young branches of poplar were grown
in small pots in a greenhouse. When the height of the
plants reached 10 - 12 cm, they were transplanted into the
split-root pots. Polyvinyl chloride (PVC) tubes with an
inner diameter of 25 cm and height of 40 cm were used.
A round PVC board attached to the end of the tube served
as the bottom of each pot. A rectangular PVC board
40 cm long and 25 cm wide was inserted centrally into
each pot to separate the root zone into two equal parts.
On top of the board, a 7.5 x 7.5 cm hole was cut to place
the plant. The crevices of the pot were sealed. Four holes,
1 cm in diameter, were drilled into the bottom of the pots
for drainage. The root zones of the pots were filled with
11 kg of clean sand with particles 0.05 - 0.1 mm in
diameter. Each plant was placed centrally into a split-root
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pot. After trans-plantation, 400 cm’® of a half-strength
Hoagland solution (Arnon and Hoagland 1940) was
added into each root zone of the pots and then every 4 d.
Thirty days later, when the plants were approximately
30 cm in height and roots had developed in both root
zones of the pots, the heterogeneous salinity treatments
were implemented. Equal mean salinity treatments were
applied based on the salinity at which a 50 % reduction in
growth in comparison to 0 mM NaCl was observed for
both tested species. For velvet ash, the mean NaCl
concentration of the two root zones of each pot was set at
137 mM NaCl (Xu et al. 1994), and this was used in both
root zones for the uniform salinity treatment. Four
heterogeneous salinity treatments, 103-171, 68-205,
34-239, and 0-273 mM NaCl (lower-higher root zone
salinity) were applied. Poplar is much more sensitive to
salinity, as low Na' accumulation in leaves can reduce
the water content and growth rate (Chen et al. 2002, Janz
et al. 2012); therefore, the mean NaCl concentration of
the two root zones was set at 51 mM NaCl and this
concentration was used in both root zones for the uniform
salinity  treatment. Three heterogeneous salinity
treatments, 34-68, 17-85, and 0-103 mM NaCl, were
applied. NaCl was added to a full-strength Hoagland
solution to obtain the desired concentrations. To avoid the
accumulation of salt in the pots, an additional 500 cm® of
the treatment solution was irrigated into each root zone of
the split-root pots. As a result, the electrical conductivity
of the drainage water at the end of each irrigation event
was almost the same as that of the irrigation solution.
Plastic film was used to prevent evaporation from the
pots. There were 6 replicates for each treatment. The
salinity treatments lasted 75 d. During the treatments, the
day/night temperature range was 14 - 16/22 - 28 °C, a
relative humidity 50 - 60 %, a 12-h photoperiod, and an
irradiance of 600 - 1 000 pmol m~s™.

Leaf gas exchange parameters were measured from
09:00 to 11:00 h on two consecutive sunny days after the
salinity treatments had been implemented for 30 d in the
uppermost fully expanded leaves using a Li-6400
photosynthesis system (Li-COR, Lincoln, NE, USA). The
ambient relative humidity was 50 - 60 %, and the leaf and
air temperatures were both 20 - 25 °C. The rate of air
flow and the photosynthetically active radiation were set
at 500 pmol s and 800 umol m™ s™', respectively. At the
end of experiment, shoot height was measured. The
leaves and shoots were sampled separately. The roots in
each zone of the pots were carefully washed with water
and divided into fine roots (diameter < 1 mm) and coarse
roots (diameter > 1 mm). The root stump in the small pot,
which did not belong to either of the root zones, was also
sampled. The leaf, stem, stump, coarse root, and fine root
samples were dried at 85 °C for 3 d.

The differential root growth between the two root
zones was estimated using the compensation coefficient
(Mou et al. 1997). The root compensation coefficient is
the ratio of the difference between the fine root biomass



in the lower and higher salinity zones to the total fine root
biomass of the whole plant. The leaf soluble sugar and
proline content were determined using the methods of
Yemm and Willis (1954) and Bates (1973), respectively,
with a spectrophotometer (UV-1750, Shimadzu, Kyoto,
Japan). The Na" content in the leaves and fine roots was
determined using an atomic absorption spectrophotometer
(WYC-402C, Shengfen, Shenyang, China) according to
Xu et al. (2011). The CI content was determined using
the silver nitrate titration method (Lao 1988).

The means and standard deviations (SDs) were
calculated, and the measured parameters were compared
using the least significant difference test (LSD) in SPSS
16.0. The figure was prepared using SigmaPlot v. 11.0
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(Systat Software, Chicago, IL, USA).

Our results show that the shoot height of velvet ash in
the 0-273 mM NaCl treatment was significantly higher
than that in all the other treatments except for the
34-239 mM NaCl treatment. In poplar, no significant
change in plant height was observed among the
treatments (Table 1). For the total biomass of velvet ash,
the 0-273 mM NaCl treatment significantly increased the
total biomass compared to the other treatments, and the
root biomass increased with increasing salinity
heterogeneity (Fig. 14). Poplar showed a slight but non-
significant increase in total plant and root biomass under
some heterogeneous salinity treatments (Fig. 1B).

Table 1. Shoot height, leaf net photosynthetic rate (Py), transpiration rate (E), fine root compensation coefficient (CC), leaf proline
content, and soluble sugar (SS) content of velvet ash and poplar treated with 137-137, 103-171, 68-205, 34-239, and 0-273 mM NaCl
and 51-51, 34-68, 17-85, and 0-103 mM NaCl (lower-higher) in root zones, respectively. Means + SDs, n = 6. Different letters
indicate significant differences among the treatments for the same species (P < 0.05). The fine root compensation coefficient is the
ratio of the difference between the fine root biomass in the lower and higher salinity zones to the total fine root biomass.

Species  NaCl Shoot height Px E CcC Leaf proline Leaf SS

[mM] [cm] [umol (CO,) m?s'] [mmol (H,0) m™?s™] mgg'(dm)] [mgg'(dm.)]

Velvet ash 137-137 6857 +3.52°  12.82 +1.60° 5.43 +1.24° -0.03+0.21° 7.38+3.26" 7.78 + 1.41°

103-171  68.63 +1.72°  12.58 £ 1.69° 5.43+0.83° 0.04+0.25° 5.85+2.79® 9.70 + 1.26°

68-205  68.43+1.29°  13.64 +1.38" 5.66 + 0.48° 0.16+0.25® 5.45+1.56° 10.11 £ 1.73

34-239  71.25+2.42%®  14.46 + 1.30" 6.42 + 0.20* 0.44+0.38 4.19+2.22° 10.24 + 0.99*

0-273  73.88+1.38"  15.61 +1.25° 6.71 £ 0.45° 0.52+0.21* 3.12+1.71° 9.76 + 1.24*

Poplar 51-51  90.33+10.17° 10.98 +2.99° 439 +1.62° 0.01+0.17° 2.06+1.17° 7.65 +2.22°

17-85  93.00+11.54* 10.97 +1.70° 5.74+0.61° 0.02+0.10° 6.82 +1.65 8.10+0.71°

34-68  93.67+£6.95*  12.07 +3.09a 6.44 +2.02° 0.10+0.08* 7.71 +1.53° 7.44 +1.16°

0-103  90.33+6.53* 11.71 +1.70° 6.42 + 1.66" -0.01+£0.26° 5.54+2.45" 6.50 + 1.82°

The fine root biomass of velvet ash increased with
decreasing NaCl concentration in both salinity zones of
the heterogeneous salinity treatment (Fig. 1C). The fine
root biomass in the zone with 0 mM NaCl was
significantly higher than that in the other treatments,
being almost three-fold that in the 273 mM zone. The
difference in fine root biomass between the lower and
higher salinity zones correlated with the compensation
coefficient of the fine roots, which increased with an
increase in salinity heterogeneity. In velvet ash, the
compensation coefficients of the fine roots increased with
an increasing difference in salinity between the two zones
(Table 1). For poplar, the fine root biomass in each root
zone and the total fine root biomass showed no
significant difference among the treatments (Fig. 1D).
The fine root compensation coefficients of poplar were
close to zero and showed no significant difference among
the four treatments (Table 1).

The net photosynthetic rate (Py) of velvet ash
generally increased with an increasing difference in
salinity between the two root zones (i.e., increasing
salinity  heterogeneity). The photosynthetic and
transpiration (E) rates in the 0-273 and 34-239 mM NaCl

treatments were significantly higher than those in the
137-137 and 103-171 mM treatments. In poplar, there
was no significant difference among the treatments in
terms of Py or E (Table 1).

In velvet ash, the leaf proline content decreased with
increasing salinity heterogeneity (Table 1). In the
heterogeneous salinity treatments, it was lower than that
in the uniform salinity treatment. The leaf soluble sugar
content was significantly higher in the heterogeneous
salinity treatments than in the uniform salinity treatment.
The leaf proline content in poplar, in contrast to that in
velvet ash, increased significantly in the heterogeneous
salinity treatments (Table 1). No significant difference in
the soluble sugar content of poplar was found among the
treatments.

The Na' content in velvet ash leaves and fine roots
decreased with an increase in salinity heterogeneity
(Fig. 1E). The Na’ content in leaves was significantly
lower than that in fine roots. The root Na' content in the
lower salinity zones was lower than that in the higher
salinity zones for each heterogeneous salinity treatment.
The CI' content in leaves and fine roots also decreased
with increasing salinity heterogeneity and was much
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higher in the leaves than in the fine roots (Fig. 1G). The
CI' content of fine roots in the lower salinity zones was
lower than that in the higher salinity zones in all the
heterogeneous salinity treatments. In poplar, the leaf Na"
content in the heterogeneous salinity treatments was
significantly lower than that in the uniform salinity
treatment (Fig. 1F). The Na' content in fine roots in the
lower salinity zones was lower than that in the higher

Velvet ash

salinity zones in each of the heterogeneous salinity
treatments. The Na' content in leaves was significantly
lower than that in fine roots in all treatments. The CI
content in leaves was significantly higher than that in fine
roots in all the treatments. The CI content in leaves in the
heterogeneous salinity treatments was slightly lower than
that in the uniform salinity treatment (Fig. 1H). No
difference in CI” content in the fine roots was observed

Poplar
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Fig. 1. Leaf, stem, stump, root, and total biomass (4 and B), fine root biomass in lower and higher salinity zones (C and D), content
of Na* (E and F) and CI' (G and H) in the leaves and fine roots of velvet ash and poplar treated with 137-137, 103-171, 68-205,
34-239, and 0-273 mM NaCl and 51-51, 34-68, 17-85, and 0-103 mM NaCl, respectively. Means + SEs, n = 6. Different letters
indicate significant differences among the treatments for the same species (P < 0.05).
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among the treatments. In velvet ash, the significant
increase in growth under the 0-273 mM NaCl treatment
may have resulted from decreased leaf Na“ and CI
content and increased photosynthesis.

The lower proline content and higher soluble sugar
content of leaves under heterogeneous salinity than under
uniform salinity implies the existence of effective
mechanisms for osmotic adjustment under saline
conditions because the synthesis of soluble sugar is more
energy-efficient than the synthesis of proline, and lower
energy consumption is likely to promote plant growth
under saline stress (An et al. 2005). The absorption of
nutrients, water, and salts as well as the exclusion of salts
are processes that occur mainly in the fine roots (Rewald
et al. 2011). In velvet ash, the growth response to the
series of heterogeneous salinity treatments might be
largely attributed to the increase in total fine root
biomass, which in turn depended mainly on the growth of
fine roots in the lower salinity zone. The increase in the
root compensation coefficient implies that velvet ash has
the ability to adjust the distribution of its roots under
heterogeneous salinity. The altered root distribution in
response to the root environment might be related to
hormonal adjustment of the roots in different salinity
zones (Kong et al. 2016). Meanwhile, the average fine
root diameter should decrease with increased salinity, and
the change in root structure may affect ion absorption and
so salt resistance. The growth, ion accumulation, and root
distribution of velvet ash under heterogeneous salinity
were consistent with previous reports on moderately salt-
tolerant species (Mulholland ef al. 2002, Dong et al
2010, Kong et al. 2012, Sun et al. 2016).

In poplar, the slight increase in growth under
heterogeneous salinity might be related to decreased Na
and CI' content (Chen et al. 2009), which might have
alleviated salinity stress. However, growth was not
significantly promoted under heterogeneous salinity,
indicating the presence of other metabolic processes that
had offset these advantages. The significant increase in
proline content under heterogeneous salinity might be one
of the factors that caused the greater consumption of
photosynthates and energy. The relatively efficient
process of osmotic adjustment, ie., the synthesis of
soluble sugar rather than proline, did not appear to be
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