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Abstract  
 
Medicinal plants are a rich source of secondary metabolites extensively used in traditional health care systems. High 
altitude biodiversity encompasses the diversified and valuable medicinal plant species. The extreme environmental 
conditions of high altitude region viz. fluctuating temperatures, high UV radiation, salinity, low oxygen concentration, 
and high wind velocity limits the plant growth and distribution. Yet, how medicinal plants respond to these extreme 
conditions is not sufficiently understood. Therefore, addressing plant acclimation to different stresses presents an 
opportunity to unravel adaptive mechanism of medicinal plants along altitude gradient. This article reviews the recently 
published research that highlights the major role of proteins in plant adaptation to extreme environmental conditions. In 
the last few decades, climate change has made a profound impact on high altitude plants. Stress conditions alter cellular 
homeostasis of plants. With the advent of proteomics, it has become evident that stresses induce changes in proteome 
by synthesis/expression of novel stress responsive proteins. These proteins constitute a highly organized, complex 
network that leads to changes in the molecular, biochemical, physiological, and morphological responses of plants. 
Herein, we comprehensively discuss the proteomics of medicinal plants and its role in adaptation along altitude 
gradient. This review aims to provide impetus to current research in medicinal plants ranging from developmental to 
stress biology and to generate basis for genetic engineers and plant breeders to produce next-generation medicinal 
plants.  

Additional key words: antifreeze proteins, climate change, heat shock proteins, photosynthesis, reactive oxygen species, secondary 
metabolites. 
 
 
Introduction 
 
In the post-genomic era, application of proteomics is 
important for understanding biological systems. 
Proteomic study offers a plethora of information from 
protein identification to quantitative profiling, sub-
cellular localization, signalling pathways, post-
translational modifications (PTMs), and protein-protein 
interactions in a tissue, cell, or organelle (Chattopadhyay 
et al. 2011, Agrawal et al. 2013, Jaiswal et al. 2013, 
Subba et al. 2013a,b, Kumar et al. 2014). In addition, 

proteomic study also highlighted plant adaptations to 
various stress conditions (Hu et al. 2015). Classical two-
dimensional gel electrophoresis (2-DE) coupled with 
mass spectrometry (MS) has been widely used for 
proteomic studies of different abiotic stresses. The 
emergence of next generation proteomic tools, such as 
stable isotope labelling with amino acids in cell culture 
(SILAC), isobaric tags for relative and absolute 
quantitation (iTRAQ), multiple reaction monitoring 
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(MRM), single reaction monitoring, sequential window 
acquisition of all theoretical fragment ion spectra 
(SWATH), and matrix-assisted laser desorption 
ionization (MALDI) imaging, have paved the way for 
high throughput proteomic study (Langridge et al. 2011).  

A variety of medicinal plants has been used directly 
or as precursors for the synthesis of herbal medicines. 
More than 70 % of the Indian population still depends on 
medicinal herbs (Gairola et al. 2010). The pharmaceutical 
industries have also expressed their interest in medicinal 
plants for bioactive phytochemicals, such as flavonoids, 
alkaloids, anthocyanins, terpenoids, lignans, quinones, 
and steroids that lead to the development of feasible 
drugs (Witzmann and Grant 2003). Most of the medicinal 
plant species are habitat-specific and flourish only within 
a narrow range of environmental conditions. It is 
expected that approximately 25 % of vascular plants 
would become extinct within the next 40 years from their 
natural habitats, due to unorganized cultivation and 
excessive harvesting (Kala et al. 2006). Since high 
altitude medicinal plants have well developed tolerance 
mechanism against harsh environmental conditions, the 
study of medicinal plant proteomes will be quite 
significant towards understanding, conservation, and 
sustainability. However, proteomic study of medicinal 
plants has certain limitations. First, limited information is 
available about the proteins involved in synthesis of 
secondary metabolites (SMs) and natural products. 
Second, protein expression profile of samples harvested 
from different developmental stage, tissue/organ, time-
points, and locations vary significantly. Third, the 
stoichiometry of proteins particularly enzymes, 
transporters, and transcription factors involved in SM 
synthesis are generally low and these proteins are often 
obscured by polyphenols and pigments that impede 
protein extraction and subsequent proteome analysis. And 
fourth, the missing sequence data of both genes and 
proteins, represents a significant challenge. 

Medicinal plants have a long association with human 
history. Various plant species served as a source of SMs 
or bioactive molecules. However, the characterization of 
biosynthetic pathways of bioactive molecules, needs to be 
fully explored. Podophyllum hexandrum produces lignans 
(podophyllotoxin) used for treating malignancies (Lau 
and Sattely 2015). Picrorhiza kurroa, a small perennial 
herb growing in Himalayan region (3 000 - 5 000 m) is 
one of the rich sources of iridoid glycosides (picroside  
I - V) with wide medicinal properties (Singh et al. 2013). 
Panax ginseng roots have been widely used as a 
traditional herbal medicine for anti-aging, anti-tumor, and 
immunity enhancement because of ginsenoids (Lee and 
Park 2016). Other medicinal plant species such as 
Artemisia produce artemisin, effective for the treatment 
of malaria, Potentilla species are used for gynecological 
disorders, Dactylorhiza hatagirea is used as nutritional 
supplement, neurostimulant, antibacterial agent and 
aphrodisiacum, and roots of Valeriana jatamansi have 
antioxidant activity (Graham et al. 2010, Warghat et al. 
2012, Thusoo et al. 2014, Bryant et al. 2015, 2016). A 

gene encoding cysteine rich mini proteins called 
cyclotides was investigated using deep mining of 
transcriptome and proteome from Viola tricolor 
(Hellinger et al. 2015). This approach will be useful to 
generate a library of bioactive peptides. A substantial 
proteome analysis of developing rhizomes in Curcuma 
comosa and Equisetum hyemale revealed the possible role 
of proteins associated with rhizome trait in plant growth 
and development (Boonmee et al. 2011, Balbuena et al. 
2012). These medicinal plants serve as primary source of 
income for high altitude habitats (Table 1 Suppl.). 

There is an increasing demand of herbal drugs for the 
human well-being. Biotechnological approaches, namely 
cell suspension culture and metabolic engineering, etc., 
have been extensively used to increase the production of 
commercially important medicinal plants. However, these 
approaches are not sufficient due to being low productive, 
time consuming and troublesome (Verpoorte et al. 1999, 
Aghaei and Komastu 2013, Yue et al. 2016). Recently, 
proteomic approaches, which provide useful methods for 
comprehensive identification of SM related proteins 
including enzymes, transporters, and especially 
transcription factors have been employed. An overview 
of proteomic techniques has been reported for 
characterization of proteins involved in SM synthesis 
(Jacobs et al. 2000, Martinez-Esteso et al. 2015). The 
identified proteins have been transferred to heterologous 
hosts for current and future industrial production. Most of 
the proteomic studies have been carried out in 
Catharanthus roseus and Papaver somniferum for 
alkaloid and morphine biosyntheses (Decker et al. 2000, 
Jacobs et al. 2005), Panax ginseng for ginsenoside 
biosynthesis, hairy root analysis, and marker protein 
identification (Lum et al. 2002, Kim et al. 2003, Nam 
et al. 2005, Ma et al. 2013, 2016), Mahonia bealei for 
benzyl isoquinoline alkaloids production (Zhang et al. 
2014), and Euphorbia kansui for laticifers development 
and disease responses (Zhao et al. 2014). Tea (Camellia 
sinensis) is an another important medicinal crop having 
different classes of flavonoids including flavonols, 
isoflavones, monomeric flavan-3-ols (catechins and 
epicatechins), anthocyanins, and oligomeric flavan-3-ols 
(proanthocyanidins). Most of the proteomic analysis of 
tea have been carried out at different storage conditions 
(Li et al. 2008), in leaves from different developmental 
stages (Li et al. 2011), and under drought and low 
temperature (LT) stress (Zhou et al. 2014, Lu et al. 
2015). To check the effect of embryo development in 
plants propagation, various proteomic studies were 
carried out on different medicinal plants, viz., Coffea 
arabica, Cyclamen persicum, Crocus sativa, Araucaria 
angustifolia, and Dianthus caryophyllus (Sharifi et al. 
2012, Mwangi et al. 2013, Campos et al. 2016,  
Dos-Santos et al. 2016, Muneer et al. 2016). These 
studies can be useful to find out the relation between 
protein expression and their involvement at different 
stages of somatic embryos development. Astonishingly, 
medicinal plant proteomics has gained attention in a few 
years ago as it is evident by increased number of 
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publications over the period 2000 - 2016 dealing with 
important medicinal plants (Fig. 1). Here, we discussed 
the effect of climate change on high altitude flora and 

also the recent developments in proteomics of plant 
adaptation. 

 

 
Fig. 1. An update of proteomics work on important medicinal plants of Himalayan region. Number of publications for 39 most often 
used medicinal plants over the period 2000 - 2016 (data from Web of Science). 

 
 

Climate change affects medicinal plant distribution  
 
Climate change is a long-term variation in the statistical 
distribution of weather patterns leading to shift in 
seasonal timings. They have begun to impact life cycles, 
distribution, as well as yield of various plant species. 
Ecologists have always been attracted to high altitude 

regions especially in light of the global climate change. 
Yet, how the medicinal plants respond to these changing 
environments is poorly understood. Therefore, addressing 
plant acclimation in the context of climate change is a 
matter of concern. The most evident effects of climate 
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change on high altitude plants over the few years involve 
phenology change, uneven distribution of plant species, 
and extinction of certain species (Anup and Ghimire 
2015). Previous reports highlighted the shifting of various 
plant species from lower to higher altitudes in Himalayan 
region and anticipate uphill shifts in near future (Rumpf 
et al. 2018). Although, this trend of uphill shift is not 
applicable to all plant species, an unexpected response is 
generally observed. In a study conducted on distribution 
of plant species under climatic changes in California, 
64 plant species had a significant downhill shift to 
optimum elevation. This downhill shift could be 
explained by regional changes in water balance 
(Crimmins et al. 2011). Furthermore, similar downhill 
shift of many other species is believed to be highly 
imminent. Elevated atmospheric CO2 concentrations at 
high temperature have beneficial effects on plant growth 
by enhancing the rate of photosynthesis and reduction in 
stomatal conductance. In an attempt, to study the effect of 
different ozone (O3) concentrations on redox proteome of 
soybean growth at free air concentration enrichment 
facility, Galant et al. (2012) identified 35 proteins, of 
which 22 proteins showed up to 5-fold higher abundance. 
Interestingly, reduced activity of phosphoenolpyruvate 
carboxylase/oxygenase (RuBisCO) decreases the 
photosynthetic rate, whereas increased activity of 

RuBisCO facilitates mobilization of leaf starch into sugar 
(Galant et al. 2012). In addition to soybean, several 
studies in diverse plant species like wheat, poplar, and 
tobacco tried to understand how environmental O3 affects 
the redox-sensitive pathways which could facilitate crop 
adaptation to global climate changes (Baier et al. 2005, 
Bohler et al. 2007, Sarkar et al. 2010). At increased 
atmospheric temperature, high altitude plants increase 
their short-term growth, resulting in reduced time 
necessary for sufficient biomass accumulation. In 
addition, under such conditions, plants also start 
accumulating SMs because the fixed carbon is distributed 
for SM production instead of growth. An established 
facility of free air CO2 enrichment (FACE) and free air 
temperature increase (FATI) in CSIR-IHBT was used to 
study climate change effects on proteome and 
metabolome of Picrorhiza kurroa in which increased 
accumulation of picrosides at elevated CO2 was observed 
(Kumar 2016). Furthermore, climate change-induced 
drought stress has negative impact on plant growth and 
yield. At cellular level, climate change mainly affects the 
chlorophyll content, photosynthesis, and antioxidant 
system. Therefore, studies in these directions will be 
important for analysis of the impact of climate change on 
high altitude plants.  

 
 
Role of proteomics in plant adaptation  
 
High altitude region is characterized by harsh 
environmental conditions that can influence both species 
richness and diversity. These environmental extremes 
alter cellular homeostasis, which leads to changes in the 
molecular, biochemical, physiological, and morpho-
logical responses of plants. These effects include 
production of reactive oxygen species (ROS), alteration 
of cellular structures, membrane functions, and 
eventually protein denaturation (Eldakak et al. 2013). 
Alpine plants have evolved many tolerance strategies to 
survive in extreme conditions prevailing at high altitudes; 
however, the mechanism underlying the evolution of 
these strategies remains less explored. Several proteomic 
studies of medicinal plants related to developmental 
biology and abiotic and biotic stresses have been reported 
in recent years which could be utilized for crop 
improvement (Sinha et al. 2011, Li et al.2014a, Correia  
et al. 2016, Zhang et al. 2015a, Zhu et al. 2015). In a 
proteomic study, Sud et al. (2014) revealed the role of 
putative cytochrome P450 superfamily protein, 
photosystem I reaction centre subunit V, 1-amino-
cyclopropane-1-carboxylate oxidase, 2-oxo-glutarate 
ferrous-dependent oxygenase, and glyceraldehyde- 
3-phosphate dehydrogenase in biosynthesis of picrosides. 
Furthermore, leaf and root proteomic studies showed 
differential expression of proteins under the dark and 
under irradiance; they are probably involved in different 
biochemical pathways which could be used to develop 
new strategies for plant adaptation and increased biomass 

production in Picrorhiza (Parkash et al. 2014).  
Along the altitude gradient, various environmental 

factors including soil temperature, UV radiation, oxygen 
concentration, rainfall, humidity, and photoperiod vary 
significantly, e.g., in the Himalayan region. Among these 
environmental factors soil temperature, rainfall, and UV 
radiation are three main factors that limit plant growth at 
high altitude. Plants show a decrease in height, a low leaf 
index, less biomass accumulation, change in stomatal 
control, root architecture, and increased accumulation of 
pigments at high altitude. Recently, it has been reported 
that alpine plant Potentilla saundersiana posseses 
independent main root system at low altitude and share 
joint form of root system among two or more plants at 
high altitudes (Ma et al. 2015). Interestingly, this shared 
root system is a tolerance strategy of plants caused by 
increased content of auxin and decreased content of 
strictosidine, which play a major role in lateral root 
formation. A decrease in stomatal aperture and stomata 
density, whereas increase in frequency of stomatal 
opening and closing is often observed at high altitudes. 
The rapid activation of MAPK signalling pathway is 
mainly responsible for stomatal movement. This 
adaptation is essential to avoid the damage from low 
temperature (LT), strong UV radiations, and low water 
content in soil at higher altitudes (Salvador et al. 1999, 
Sally et al. 2001). Photosynthetic pigments especially 
chlorophylls and carotenoids show an increased 
accumulation at high altitude. This increased content of 
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chlorophyll can absorb more sun radiation for 
photosynthesis, moreover, carotenoids might also be 
involved in prevention of damage from excess of visible 
radiation or from UV radiation. This is accompanied by 
increased expression of photosynthesis related proteins 
like chlorophyll a/b binding protein, light harvesting 
chlorophyll a/b binding protein, photosystem I reaction 
center subunit II, and photosystem I reaction center 
subunit IV in Kobersia pygmaea along elevational 
gradient (Li et al. 2014b). The structure and composition 
of cell wall is constantly modified to allow plant growth 
under changing environments (Lee et al. 2011). Increase 
in cell wall thickness is due to an accumulation of 
proteins involved in cellulose and lignin biosynthesis, 
including xylan-1,4-β-xylosidase, cellulose synthase, and 
caffeoyl-CoA-3-O-methyltransferase (Ma et al. 2015). 
These molecular adaptations help the plants to 
acclimatize in extreme conditions at high altitudes. 

Seed germination and seedling growth are important 
physiological stages of plant development which are 
severely affected by altitude. It has been reported that 
lower mobilization of reserves, delayed cell division, and 
enlarged and injured hypocotyls are mainly due to 
fluctuations of environmental stimuli (Sosa et al. 2005). 
To decipher the molecular mechanism of developmental 
processes, particularly seed germination in Podophyllum 
at high altitude, 27 newly synthesized proteins were 
identified. The major group of proteins were involved in 
metabolism, signalling, and stress responses, suggesting 
their role in increased mobilization of reserves, cell 
division, as well as protection from stress conditions 
(Dogra et al. 2013). In an attempt to develop 
Podophyllum seed germination protein interaction 
network (PGN), Dogra et al. (2015) clustered 1 028 seed 
proteins. This study identified the key proteins involved 
in seed germination, particularly radicle protrusion, that 
are associated with diverse biological processes like 
metabolism, signalling, cell wall modification, protein 
modification, and cell cycle regulation. Furthermore, 
quantative proteomic study of seed germination was also 
carried out in Magnolia sieboldii, Jatropha curcas, 
Ricinus communis, and Aconitum heterophyllum 
(Nogueira et al. 2013, Pinheiro et al. 2013, Rana et al. 
2013, Lu et al. 2016). Besides these studies, a web portal 
(SPWP http://www.seed-proteome.com/) offers 
qualitative and quantitative information regarding seed 
proteome (Galland et al. 2012). Recent proteomic studies 
in Nigella sativa indicated that majority of seed proteins 
were related to saccharide, lipid, and amino acid 
metabolism which is responsible for synthesis and 
storage of different oils and alkaloids that might be useful 
to treat many diseases (Alanazi et al. 2016). 

Generation of ROS represents the most common and 
early plant response against abiotic and biotic stresses 
(Sewelam et al. 2016). The excess of ROS can damage 
the membrane lipids, saccharides, proteins, and DNA in 
the stressed cells. Thus, plant cells have evolved 
antioxidant systems. It has been reported that ROS lead to 
change in intracellular redox homeostasis that induces 

expression of many antioxidant enzymes (superoxide 
dismutase, peroxidase, ascorbate peroxidase, glutathione 
S-transferase, and catalase) in Potentilla saundersiana, 
Kobersia pygmaea, Withania somnifera, and Phyllanthus 
amarus at high altitude (Takshak and Agrawal 2014). It is 
predicted that higher activities of antioxidant enzymes 
may play an important role in plant adaptation to 
environmental stresses by orchestrating various key 
signalling events via their interaction with many other 
secondary messengers (protein kinases, phosphatases, 
phytohormones, and calcium ions). Proteins with thiols, 
such as glutathione and thioredoxin-1, are essential for 
many nuclear functions including DNA replication and 
repair, transcription, chromatin stability, and nucleo-
cytoplasmic trafficking.  

High altitude plant species respond to LT and freezing 
stress by spontaneous ice formation in their extracellular 
spaces or by deep super-cooling of their sap, thereby 
allowing plants to survive. LT induces expression of 
many genes encoding specific proteins including 
antifreeze proteins (AFPs), late embryogenesis abundant 
(LEA) proteins, heat shock proteins (HSPs), mRNA 
binding proteins, osmotin, enzymes of osmolyte 
biosynthesis, water channel proteins, and detoxification 
enzymes, which have a role in protecting cells from LT 
damage. AFPs are a class of polypeptides which binds to 
ice crystals in apoplast and prevent their growth and 
migration into other tissues (Griffith and Yaish 2004, 
Gupta and Deswal 2014, Sharma et al. 2016). Consistent 
with these observations, 61 LT stress responsive proteins 
including thaumatin-like and chitinase as putative AFPs 
were identified in Hippophae rhamnoides (Gupta and 
Deswal 2012). LEA proteins are important example of 
stress-induced hydrophilic proteins that functions as 
water binding molecule in ion sequestration and 
macromolecule and membrane stabilization. A study on 
Caragana jubata, revealed an up-regulation of 11 LEA 
proteins with chaperone activity exclusively present in 
this plant and provides tolerance to LT (Bhardwaj et al. 
2013). This study predicted the involvement of LEA 
proteins in initial shock by LT, particularly in the period 
in which other chaperons are not induced. Another 
proteomic study of garlic showed that proteins associated 
with physiological and metabolic processes are highly 
accumulated under LT stress which suggested that plant 
acclimatization to stress condition is by changing their 
proteome composition (Dufoo-Hurtado et al. 2015). 
Similarly, in the leaves of birch, proteins involved in 
defense/stress response, C-N metabolism, hormone 
signalling, biosynthesis, and photosynthesis play a key 
role in cold hardiness (Wu et al. 2014, Zhang et al. 
2015b). Therefore, it is proposed that protein-protein 
interaction based network might confer tolerance to LT 
stress. HSPs, especially HSP90, HSP70, HSP60, and 
sHSPs, and chaperones are the most important stress-
induced proteins that enhance plant tolerance to various 
stresses including drought, salinity, and oxidative stress 
in addition to LT by preventing aggregation and 
promoting proper folding of proteins (Timperio et al. 
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2008, Huang et al. 2016). Kobresia pygmaea accumulates 
more HSP and especially HSP20 along altitude gradient, 
which strongly suggests that HSPs are involved in plant 
tolerance to this harsh environment (Li et al. 2014b). 
Similarly, an up regulation of HSP101, HSP70, HSP90, 
and the molecular chaperones (DnaK and DnaJ) in 
Portulaca oleracea has been observed under high 
temperature and humidity (Yang et al. 2012). Selected 
stress-responsive proteins from medicinal plants are 
presented in Table 2 Suppl. 

The gradual increase in atmospheric temperature 
coupled with limited rainfall induce drought, which leads 
to retardation of growth, development, and eventually 
plant mortality. Therefore, plants under drought stress 
usually activate their defense mechanisms to re-establish 
the cellular homeostasis (Zurbriggen et al. 2008, 
Gharechahi et al. 2014). Comparative proteomic study in 
Eucalyptus globulus revealed that drought tolerant 
genotype has more developed root system, smaller seeds 
with low water content in the mature state, enhanced 
accumulation of endogenous ABA, and up-regulation of 
responsive to abscisic acid 17 (RAB17) and 28 (RAB28) 
proteins (Valdes et al. 2013). Kashyap et al. (2014) 
investigated the molecular response of Picrorhiza kurroa 
to drought and identified a total of 13 and 18 proteins in 
leaves and roots, respectively. They observed that 
proteins involved in transcription, stress, and defence 
response are up-regulated suggesting that plants undergo 
reprogramming of their gene expression in drought 
conditions. In addition, abundance of proteins related to 
signalling, metabolism, and transport was also increased, 
which probably involved synthesis of SMs and their 
transport to different organelles. Zhou et al. (2014) 
examined the effect of exogenous ABA on the tea leaf 
proteome under drought stress. The study revealed that 
proteins particularly related to photosynthesis, energy 
metabolism, and S-adenosylmethionine biosynthesis such 
as cytochrome b6-f complex, iron-sulfur subunit 2, 
aldehyde dehydrogenase family 2 member B4, and S-
adenosyl-methionine synthase 3 are down regulated 
which supports the hypothesis that plants undergo 
metabolic adjustment for energy consumption in response 

to drought stress. Identification of these novel proteins, 
their expression, and understanding of their functions 
would provide the basis for effective engineering 
strategies to improve stress tolerance of medicinal plants 
with enhanced SM content. Indeed, by deliberately 
applying moderate drought stress during their cultivation, 
the quality of medicinal plants can be enhanced 
significantly, however, this aim requires much more 
research.  

High altitude plants are able to modulate the content 
of SMs like isoprenoids, alkaloids, and phenols during 
different abiotic stresses and the scientific knowledge in 
this field is accumulating. An increased content of 
alkaloids, flavonols, anthocyanidines, hydroxybenzoic 
acids, taxanes, phytosterol, and carotenoids has been 
reported in Clematis terniflora, Ribes nigrum, Malus 
domestica, and Taxus chinensis after UV-B exposure 
(Alothman et al. 2009, Gao et al. 2016, Yang et al. 2016, 
Zheng et al. 2016). Recently, Ma et al. (2015) reported a 
consistent increase in flavonoid metabolism related 
proteins (flavone 3′-O-methyltransferase 1, isoflavone 
reductase, and chalcone synthase D) leads to an increase 
in the accumulation of flavonoids and anthocyanins in 
Potentilla saundersiana, suggesting their role in plant 
tolerance to environmental stresses. Elicitation of plant 
cells in cell-culture represents a useful biotechnological 
tool to improve the production of valuable metabolites. 
The cell suspension culture of Podophyllum hexandrum 
produces more podophyllotoxin (PTOX) in response to 
methyl jasmonate elicitation (Bhattacharyya et al. 2012). 
An enhanced production of PTOX is attributed to up-
regulation of many phenylpropanoid and monolignol 
pathway enzymes like chalcone synthase, caffeoyl CoA 
3-O-methyltransferase, polyphenol oxidase, caffeic acid-
O-methyl transferase, S-adenosyl-L-methionine 
dependent methyltransferases, etc. Similarly, poppy cell 
culture produces more sanguinarine in response to fungal 
elicitor (Desgagne-Penix et al. 2010). A list of proteins 
involved in SM synthesis is given in Table 3 Suppl. It is 
supposed that an increased content of SMs is involved in 
plant protection by modulating antioxidant system and 
chaperone proteins. 

 
 

Conclusions and questions 
 
With an increasing shift to environmental extremes, it is 
essential to explore the molecular mechanism of plant 
adaptation along an elevation gradient. Extreme 
environmental conditions may impact several key 
biological processes including photosynthesis, 
transpiration, antioxidant defence systems, and hormone 
signalling. Therefore, plants use multiple strategies to 
adapt to high altitude environmental conditions. There is 
a great variability in expression of different stress 
induced proteins, namely HSPs, AFPs, RBP, and LEA, 
and detoxification enzymes which likely contribute to 
plant adaptation. Furthermore, recent molecular, 
physiological, and morphological studies have taken a big 

leap forward to reveal molecular mechanism of plant 
adaptation to extreme environmental conditions at high 
altitude. However, complex studies of ”omics” in 
different developmental stages and under variable stress 
conditions will be required for better understanding 
signalling pathways. Successful acclimation of medicinal 
plants to the alpine environment has raised many key 
questions, which continue to remain unanswered. For 
example, what are morphological, physiological, and 
biochemical characteristics acquired by medicinal plants 
for stress tolerance at high altitude? How many and 
which type of proteins are involved in signalling 
pathways for stress tolerance? Is there any post-
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translational modification of proteins, particularly 
phosphorylation involved in plant adaptations? How 
differently do the cell organelles integrate their signals to 
regulate nuclear gene expression and other cellular 
activities? To what extent does the SMs content 
contribute to plant adaptations along altitude gradient? 
What type of antifreeze proteins are involved in survival 
at low temperature? Does epigenetic reprogramming play 
any role in plant survival at high altitude environment? 
These questions need to be addressed for establishment of 
a mechanistic model of plant survival under extreme 

environmental conditions. To answer these questions, 
proteomics has evolved as an essential tool along with 
different “omics” approaches for better understanding 
plant tolerance mechanisms. This study could help 
researchers in identification, cultivation, and production 
of economically important medicinal plants. In near 
future, the effect of climate change will become more 
prominent so it is important to develop new plant 
genotypes that are more tolerant to changing climate 
conditions. 
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