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Abstract

Medicinal plants are a rich source of secondary metabolites extensively used in traditional health care systems. High
altitude biodiversity encompasses the diversified and valuable medicinal plant species. The extreme environmental
conditions of high altitude region viz. fluctuating temperatures, high UV radiation, salinity, low oxygen concentration,
and high wind velocity limits the plant growth and distribution. Yet, how medicinal plants respond to these extreme
conditions is not sufficiently understood. Therefore, addressing plant acclimation to different stresses presents an
opportunity to unravel adaptive mechanism of medicinal plants along altitude gradient. This article reviews the recently
published research that highlights the major role of proteins in plant adaptation to extreme environmental conditions. In
the last few decades, climate change has made a profound impact on high altitude plants. Stress conditions alter cellular
homeostasis of plants. With the advent of proteomics, it has become evident that stresses induce changes in proteome
by synthesis/expression of novel stress responsive proteins. These proteins constitute a highly organized, complex
network that leads to changes in the molecular, biochemical, physiological, and morphological responses of plants.
Herein, we comprehensively discuss the proteomics of medicinal plants and its role in adaptation along altitude
gradient. This review aims to provide impetus to current research in medicinal plants ranging from developmental to
stress biology and to generate basis for genetic engineers and plant breeders to produce next-generation medicinal
plants.

Additional key words: antifreeze proteins, climate change, heat shock proteins, photosynthesis, reactive oxygen species, secondary
metabolites.

Introduction

In the post-genomic era, application of proteomics is
important for understanding biological systems.
Proteomic study offers a plethora of information from
protein identification to quantitative profiling, sub-
cellular  localization, signalling pathways, post-
translational modifications (PTMs), and protein-protein
interactions in a tissue, cell, or organelle (Chattopadhyay
et al. 2011, Agrawal et al. 2013, Jaiswal et al. 2013,
Subba et al. 2013a,b, Kumar et al. 2014). In addition,

proteomic study also highlighted plant adaptations to
various stress conditions (Hu et al. 2015). Classical two-
dimensional gel electrophoresis (2-DE) coupled with
mass spectrometry (MS) has been widely used for
proteomic studies of different abiotic stresses. The
emergence of next generation proteomic tools, such as
stable isotope labelling with amino acids in cell culture
(SILAC), isobaric tags for relative and absolute
quantitation (iTRAQ), multiple reaction monitoring
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(MRM), single reaction monitoring, sequential window
acquisition of all theoretical fragment ion spectra
(SWATH), and matrix-assisted laser desorption
ionization (MALDI) imaging, have paved the way for
high throughput proteomic study (Langridge ef al. 2011).

A variety of medicinal plants has been used directly
or as precursors for the synthesis of herbal medicines.
More than 70 % of the Indian population still depends on
medicinal herbs (Gairola et al. 2010). The pharmaceutical
industries have also expressed their interest in medicinal
plants for bioactive phytochemicals, such as flavonoids,
alkaloids, anthocyanins, terpenoids, lignans, quinones,
and steroids that lead to the development of feasible
drugs (Witzmann and Grant 2003). Most of the medicinal
plant species are habitat-specific and flourish only within
a narrow range of environmental conditions. It is
expected that approximately 25 % of vascular plants
would become extinct within the next 40 years from their
natural habitats, due to unorganized cultivation and
excessive harvesting (Kala efal. 2006). Since high
altitude medicinal plants have well developed tolerance
mechanism against harsh environmental conditions, the
study of medicinal plant proteomes will be quite
significant towards understanding, conservation, and
sustainability. However, proteomic study of medicinal
plants has certain limitations. First, limited information is
available about the proteins involved in synthesis of
secondary metabolites (SMs) and natural products.
Second, protein expression profile of samples harvested
from different developmental stage, tissue/organ, time-
points, and locations vary significantly. Third, the
stoichiometry of proteins particularly  enzymes,
transporters, and transcription factors involved in SM
synthesis are generally low and these proteins are often
obscured by polyphenols and pigments that impede
protein extraction and subsequent proteome analysis. And
fourth, the missing sequence data of both genes and
proteins, represents a significant challenge.

Medicinal plants have a long association with human
history. Various plant species served as a source of SMs
or bioactive molecules. However, the characterization of
biosynthetic pathways of bioactive molecules, needs to be
fully explored. Podophyllum hexandrum produces lignans
(podophyllotoxin) used for treating malignancies (Lau
and Sattely 2015). Picrorhiza kurroa, a small perennial
herb growing in Himalayan region (3 000 - 5 000 m) is
one of the rich sources of iridoid glycosides (picroside
I - V) with wide medicinal properties (Singh et al. 2013).
Panax ginseng roots have been widely used as a
traditional herbal medicine for anti-aging, anti-tumor, and
immunity enhancement because of ginsenoids (Lee and
Park 2016). Other medicinal plant species such as
Artemisia produce artemisin, effective for the treatment
of malaria, Potentilla species are used for gynecological
disorders, Dactylorhiza hatagirea is used as nutritional
supplement, neurostimulant, antibacterial agent and
aphrodisiacum, and roots of Valeriana jatamansi have
antioxidant activity (Graham et al. 2010, Warghat et al.
2012, Thusoo et al. 2014, Bryant et al. 2015, 2016). A
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gene encoding cysteine rich mini proteins called
cyclotides was investigated using deep mining of
transcriptome and proteome from Viola tricolor
(Hellinger et al. 2015). This approach will be useful to
generate a library of bioactive peptides. A substantial
proteome analysis of developing rhizomes in Curcuma
comosa and Equisetum hyemale revealed the possible role
of proteins associated with rhizome trait in plant growth
and development (Boonmee et al. 2011, Balbuena et al.
2012). These medicinal plants serve as primary source of
income for high altitude habitats (Table 1 Suppl.).

There is an increasing demand of herbal drugs for the
human well-being. Biotechnological approaches, namely
cell suspension culture and metabolic engineering, etc.,
have been extensively used to increase the production of
commercially important medicinal plants. However, these
approaches are not sufficient due to being low productive,
time consuming and troublesome (Verpoorte et al. 1999,
Aghaei and Komastu 2013, Yue et al. 2016). Recently,
proteomic approaches, which provide useful methods for
comprehensive identification of SM related proteins
including enzymes, transporters, and especially
transcription factors have been employed. An overview
of proteomic techniques has been reported for
characterization of proteins involved in SM synthesis
(Jacobs et al. 2000, Martinez-Esteso et al. 2015). The
identified proteins have been transferred to heterologous
hosts for current and future industrial production. Most of
the proteomic studies have been carried out in
Catharanthus roseus and Papaver somniferum for
alkaloid and morphine biosyntheses (Decker et al. 2000,
Jacobs et al. 2005), Panax ginseng for ginsenoside
biosynthesis, hairy root analysis, and marker protein
identification (Lum et al. 2002, Kim et al. 2003, Nam
et al. 2005, Ma et al. 2013, 2016), Mahonia bealei for
benzyl isoquinoline alkaloids production (Zhang et al.
2014), and Euphorbia kansui for laticifers development
and disease responses (Zhao et al. 2014). Tea (Camellia
sinensis) is an another important medicinal crop having
different classes of flavonoids including flavonols,
isoflavones, monomeric flavan-3-ols (catechins and
epicatechins), anthocyanins, and oligomeric flavan-3-ols
(proanthocyanidins). Most of the proteomic analysis of
tea have been carried out at different storage conditions
(Li et al. 2008), in leaves from different developmental
stages (Li et al. 2011), and under drought and low
temperature (LT) stress (Zhou et al. 2014, Lu et al.
2015). To check the effect of embryo development in
plants propagation, various proteomic studies were
carried out on different medicinal plants, viz., Coffea
arabica, Cyclamen persicum, Crocus sativa, Araucaria
angustifolia, and Dianthus caryophyllus (Sharifi et al.
2012, Mwangi et al. 2013, Campos et al. 2016,
Dos-Santos et al. 2016, Muneer etal. 2016). These
studies can be useful to find out the relation between
protein expression and their involvement at different
stages of somatic embryos development. Astonishingly,
medicinal plant proteomics has gained attention in a few
years ago as it is evident by increased number of
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publications over the period 2000 - 2016 dealing with  also the recent developments in proteomics of plant
important medicinal plants (Fig. 1). Here, we discussed  adaptation.
the effect of climate change on high altitude flora and

MEDICINAL PLANTS
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Fig. 1. An update of proteomics work on important medicinal plants of Himalayan region. Number of publications for 39 most often
used medicinal plants over the period 2000 - 2016 (data from Web of Science).

Climate change affects medicinal plant distribution

Climate change is a long-term variation in the statistical  regions especially in light of the global climate change.
distribution of weather patterns leading to shift in  Yet, how the medicinal plants respond to these changing
seasonal timings. They have begun to impact life cycles,  environments is poorly understood. Therefore, addressing
distribution, as well as yield of various plant species.  plant acclimation in the context of climate change is a
Ecologists have always been attracted to high altitude  matter of concern. The most evident effects of climate
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change on high altitude plants over the few years involve
phenology change, uneven distribution of plant species,
and extinction of certain species (Anup and Ghimire
2015). Previous reports highlighted the shifting of various
plant species from lower to higher altitudes in Himalayan
region and anticipate uphill shifts in near future (Rumpf
et al. 2018). Although, this trend of uphill shift is not
applicable to all plant species, an unexpected response is
generally observed. In a study conducted on distribution
of plant species under climatic changes in California,
64 plant species had a significant downhill shift to
optimum elevation. This downhill shift could be
explained by regional changes in water balance
(Crimmins et al. 2011). Furthermore, similar downhill
shift of many other species is believed to be highly
imminent. Elevated atmospheric CO, concentrations at
high temperature have beneficial effects on plant growth
by enhancing the rate of photosynthesis and reduction in
stomatal conductance. In an attempt, to study the effect of
different ozone (O3) concentrations on redox proteome of
soybean growth at free air concentration enrichment
facility, Galant et al. (2012) identified 35 proteins, of
which 22 proteins showed up to 5-fold higher abundance.
Interestingly, reduced activity of phosphoenolpyruvate
carboxylase/oxygenase  (RuBisCO) decreases the
photosynthetic rate, whereas increased activity of

Role of proteomics in plant adaptation

High altitude region 1is characterized by harsh
environmental conditions that can influence both species
richness and diversity. These environmental extremes
alter cellular homeostasis, which leads to changes in the
molecular, biochemical, physiological, and morpho-
logical responses of plants. These effects include
production of reactive oxygen species (ROS), alteration
of cellular structures, membrane functions, and
eventually protein denaturation (Eldakak et al. 2013).
Alpine plants have evolved many tolerance strategies to
survive in extreme conditions prevailing at high altitudes;
however, the mechanism underlying the evolution of
these strategies remains less explored. Several proteomic
studies of medicinal plants related to developmental
biology and abiotic and biotic stresses have been reported
in recent years which could be utilized for crop
improvement (Sinha et al. 2011, Li et al.2014a, Correia
et al. 2016, Zhang et al. 2015a, Zhu et al. 2015). In a
proteomic study, Sud et al. (2014) revealed the role of
putative  cytochrome  Psso  superfamily  protein,
photosystem I reaction centre subunit V, 1-amino-
cyclopropane-1-carboxylate oxidase, 2-oxo-glutarate
ferrous-dependent  oxygenase, and glyceraldehyde-
3-phosphate dehydrogenase in biosynthesis of picrosides.
Furthermore, leaf and root proteomic studies showed
differential expression of proteins under the dark and
under irradiance; they are probably involved in different
biochemical pathways which could be used to develop
new strategies for plant adaptation and increased biomass

PROTEOMIC STUDY OF MEDICINAL PLANTS

RuBisCO facilitates mobilization of leaf starch into sugar
(Galant et al. 2012). In addition to soybean, several
studies in diverse plant species like wheat, poplar, and
tobacco tried to understand how environmental O3 affects
the redox-sensitive pathways which could facilitate crop
adaptation to global climate changes (Baier et al. 2005,
Bohler et al. 2007, Sarkar et al. 2010). At increased
atmospheric temperature, high altitude plants increase
their short-term growth, resulting in reduced time
necessary for sufficient biomass accumulation. In
addition, under such conditions, plants also start
accumulating SMs because the fixed carbon is distributed
for SM production instead of growth. An established
facility of free air CO, enrichment (FACE) and free air
temperature increase (FATI) in CSIR-IHBT was used to
study climate change effects on protcome and
metabolome of Picrorhiza kurroa in which increased
accumulation of picrosides at elevated CO, was observed
(Kumar 2016). Furthermore, climate change-induced
drought stress has negative impact on plant growth and
yield. At cellular level, climate change mainly affects the
chlorophyll content, photosynthesis, and antioxidant
system. Therefore, studies in these directions will be
important for analysis of the impact of climate change on
high altitude plants.

production in Picrorhiza (Parkash et al. 2014).

Along the altitude gradient, various environmental
factors including soil temperature, UV radiation, oxygen
concentration, rainfall, humidity, and photoperiod vary
significantly, e.g., in the Himalayan region. Among these
environmental factors soil temperature, rainfall, and UV
radiation are three main factors that limit plant growth at
high altitude. Plants show a decrease in height, a low leaf
index, less biomass accumulation, change in stomatal
control, root architecture, and increased accumulation of
pigments at high altitude. Recently, it has been reported
that alpine plant Potentilla saundersiana posseses
independent main root system at low altitude and share
joint form of root system among two or more plants at
high altitudes (Ma et al. 2015). Interestingly, this shared
root system is a tolerance strategy of plants caused by
increased content of auxin and decreased content of
strictosidine, which play a major role in lateral root
formation. A decrease in stomatal aperture and stomata
density, whereas increase in frequency of stomatal
opening and closing is often observed at high altitudes.
The rapid activation of MAPK signalling pathway is
mainly responsible for stomatal movement. This
adaptation is essential to avoid the damage from low
temperature (LT), strong UV radiations, and low water
content in soil at higher altitudes (Salvador et al. 1999,
Sally et al. 2001). Photosynthetic pigments especially
chlorophylls and carotenoids show an increased
accumulation at high altitude. This increased content of
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chlorophyll can absorb more sun radiation for
photosynthesis, moreover, carotenoids might also be
involved in prevention of damage from excess of visible
radiation or from UV radiation. This is accompanied by
increased expression of photosynthesis related proteins
like chlorophyll a/b binding protein, light harvesting
chlorophyll a/b binding protein, photosystem I reaction
center subunit II, and photosystem I reaction center
subunit IV in Kobersia pygmaea along elevational
gradient (Li ef al. 2014b). The structure and composition
of cell wall is constantly modified to allow plant growth
under changing environments (Lee ef al. 2011). Increase
in cell wall thickness is due to an accumulation of
proteins involved in cellulose and lignin biosynthesis,
including xylan-1,4-B-xylosidase, cellulose synthase, and
caffeoyl-CoA-3-O-methyltransferase (Ma et al. 2015).
These molecular adaptations help the plants to
acclimatize in extreme conditions at high altitudes.

Seed germination and seedling growth are important
physiological stages of plant development which are
severely affected by altitude. It has been reported that
lower mobilization of reserves, delayed cell division, and
enlarged and injured hypocotyls are mainly due to
fluctuations of environmental stimuli (Sosa et al. 2005).
To decipher the molecular mechanism of developmental
processes, particularly seed germination in Podophyllum
at high altitude, 27 newly synthesized proteins were
identified. The major group of proteins were involved in
metabolism, signalling, and stress responses, suggesting
their role in increased mobilization of reserves, cell
division, as well as protection from stress conditions
(Dogra et al. 2013). In an attempt to develop
Podophyllum seed germination protein interaction
network (PGN), Dogra et al. (2015) clustered 1 028 seed
proteins. This study identified the key proteins involved
in seed germination, particularly radicle protrusion, that
are associated with diverse biological processes like
metabolism, signalling, cell wall modification, protein
modification, and cell cycle regulation. Furthermore,
quantative proteomic study of seed germination was also
carried out in Magnolia sieboldii, Jatropha curcas,
Ricinus  communis, and Aconitum  heterophyllum
(Nogueira et al. 2013, Pinheiro ef al. 2013, Rana et al.
2013, Lu et al. 2016). Besides these studies, a web portal
(SPWP http://www.seed-proteome.com/) offers
qualitative and quantitative information regarding seed
proteome (Galland ez al. 2012). Recent proteomic studies
in Nigella sativa indicated that majority of seed proteins
were related to saccharide, lipid, and amino acid
metabolism which is responsible for synthesis and
storage of different oils and alkaloids that might be useful
to treat many diseases (Alanazi ef al. 2016).

Generation of ROS represents the most common and
early plant response against abiotic and biotic stresses
(Sewelam et al. 2016). The excess of ROS can damage
the membrane lipids, saccharides, proteins, and DNA in
the stressed cells. Thus, plant cells have evolved
antioxidant systems. It has been reported that ROS lead to
change in intracellular redox homeostasis that induces
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expression of many antioxidant enzymes (superoxide
dismutase, peroxidase, ascorbate peroxidase, glutathione
S-transferase, and catalase) in Potentilla saundersiana,
Kobersia pygmaea, Withania somnifera, and Phyllanthus
amarus at high altitude (Takshak and Agrawal 2014). It is
predicted that higher activities of antioxidant enzymes
may play an important role in plant adaptation to
environmental stresses by orchestrating various key
signalling events via their interaction with many other
secondary messengers (protein kinases, phosphatases,
phytohormones, and calcium ions). Proteins with thiols,
such as glutathione and thioredoxin-1, are essential for
many nuclear functions including DNA replication and
repair, transcription, chromatin stability, and nucleo-
cytoplasmic trafficking.

High altitude plant species respond to LT and freezing
stress by spontaneous ice formation in their extracellular
spaces or by deep super-cooling of their sap, thereby
allowing plants to survive. LT induces expression of
many genes encoding specific proteins including
antifreeze proteins (AFPs), late embryogenesis abundant
(LEA) proteins, heat shock proteins (HSPs), mRNA
binding proteins, osmotin, enzymes of osmolyte
biosynthesis, water channel proteins, and detoxification
enzymes, which have a role in protecting cells from LT
damage. AFPs are a class of polypeptides which binds to
ice crystals in apoplast and prevent their growth and
migration into other tissues (Griffith and Yaish 2004,
Gupta and Deswal 2014, Sharma et al. 2016). Consistent
with these observations, 61 LT stress responsive proteins
including thaumatin-like and chitinase as putative AFPs
were identified in Hippophae rhamnoides (Gupta and
Deswal 2012). LEA proteins are important example of
stress-induced hydrophilic proteins that functions as
water binding molecule in ion sequestration and
macromolecule and membrane stabilization. A study on
Caragana jubata, revealed an up-regulation of 11 LEA
proteins with chaperone activity exclusively present in
this plant and provides tolerance to LT (Bhardwaj et al.
2013). This study predicted the involvement of LEA
proteins in initial shock by LT, particularly in the period
in which other chaperons are not induced. Another
proteomic study of garlic showed that proteins associated
with physiological and metabolic processes are highly
accumulated under LT stress which suggested that plant
acclimatization to stress condition is by changing their
proteome composition (Dufoo-Hurtado et al. 2015).
Similarly, in the leaves of birch, proteins involved in
defense/stress response, C-N metabolism, hormone
signalling, biosynthesis, and photosynthesis play a key
role in cold hardiness (Wu et al. 2014, Zhang et al.
2015b). Therefore, it is proposed that protein-protein
interaction based network might confer tolerance to LT
stress. HSPs, especially HSP90, HSP70, HSP60, and
sHSPs, and chaperones are the most important stress-
induced proteins that enhance plant tolerance to various
stresses including drought, salinity, and oxidative stress
in addition to LT by preventing aggregation and
promoting proper folding of proteins (Timperio et al.



2008, Huang et al. 2016). Kobresia pygmaea accumulates
more HSP and especially HSP20 along altitude gradient,
which strongly suggests that HSPs are involved in plant
tolerance to this harsh environment (Li et al. 2014b).
Similarly, an up regulation of HSP101, HSP70, HSP90,
and the molecular chaperones (DnaK and Dnal) in
Portulaca oleracea has been observed under high
temperature and humidity (Yang et al. 2012). Selected
stress-responsive proteins from medicinal plants are
presented in Table 2 Suppl.

The gradual increase in atmospheric temperature
coupled with limited rainfall induce drought, which leads
to retardation of growth, development, and eventually
plant mortality. Therefore, plants under drought stress
usually activate their defense mechanisms to re-establish
the cellular homeostasis (Zurbriggen et al. 2008,
Gharechahi et al. 2014). Comparative proteomic study in
Eucalyptus  globulus revealed that drought tolerant
genotype has more developed root system, smaller seeds
with low water content in the mature state, enhanced
accumulation of endogenous ABA, and up-regulation of
responsive to abscisic acid 17 (RAB17) and 28 (RAB28)
proteins (Valdes et al. 2013). Kashyap et al. (2014)
investigated the molecular response of Picrorhiza kurroa
to drought and identified a total of 13 and 18 proteins in
leaves and roots, respectively. They observed that
proteins involved in transcription, stress, and defence
response are up-regulated suggesting that plants undergo
reprogramming of their gene expression in drought
conditions. In addition, abundance of proteins related to
signalling, metabolism, and transport was also increased,
which probably involved synthesis of SMs and their
transport to different organelles. Zhou et al. (2014)
examined the effect of exogenous ABA on the tea leaf
proteome under drought stress. The study revealed that
proteins particularly related to photosynthesis, energy
metabolism, and S-adenosylmethionine biosynthesis such
as cytochrome bo6-f complex, iron-sulfur subunit 2,
aldehyde dehydrogenase family 2 member B4, and S-
adenosyl-methionine synthase 3 are down regulated
which supports the hypothesis that plants undergo
metabolic adjustment for energy consumption in response

Conclusions and questions

With an increasing shift to environmental extremes, it is
essential to explore the molecular mechanism of plant

adaptation along an elevation gradient. Extreme
environmental conditions may impact several key
biological processes including  photosynthesis,

transpiration, antioxidant defence systems, and hormone
signalling. Therefore, plants use multiple strategies to
adapt to high altitude environmental conditions. There is
a great variability in expression of different stress
induced proteins, namely HSPs, AFPs, RBP, and LEA,
and detoxification enzymes which likely contribute to
plant adaptation. Furthermore, recent molecular,
physiological, and morphological studies have taken a big
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to drought stress. Identification of these novel proteins,
their expression, and understanding of their functions
would provide the basis for effective engineering
strategies to improve stress tolerance of medicinal plants
with enhanced SM content. Indeed, by deliberately
applying moderate drought stress during their cultivation,
the quality of medicinal plants can be enhanced
significantly, however, this aim requires much more
research.

High altitude plants are able to modulate the content
of SMs like isoprenoids, alkaloids, and phenols during
different abiotic stresses and the scientific knowledge in
this field is accumulating. An increased content of
alkaloids, flavonols, anthocyanidines, hydroxybenzoic
acids, taxanes, phytosterol, and carotenoids has been
reported in Clematis terniflora, Ribes nigrum, Malus
domestica, and Taxus chinensis after UV-B exposure
(Alothman et al. 2009, Gao ef al. 2016, Yang et al. 2016,
Zheng et al. 2016). Recently, Ma ef al. (2015) reported a
consistent increase in flavonoid metabolism related
proteins (flavone 3'-O-methyltransferase 1, isoflavone
reductase, and chalcone synthase D) leads to an increase
in the accumulation of flavonoids and anthocyanins in
Potentilla saundersiana, suggesting their role in plant
tolerance to environmental stresses. Elicitation of plant
cells in cell-culture represents a useful biotechnological
tool to improve the production of valuable metabolites.
The cell suspension culture of Podophyllum hexandrum
produces more podophyllotoxin (PTOX) in response to
methyl jasmonate elicitation (Bhattacharyya et al. 2012).
An enhanced production of PTOX is attributed to up-
regulation of many phenylpropanoid and monolignol
pathway enzymes like chalcone synthase, caffeoyl CoA
3-O-methyltransferase, polyphenol oxidase, caffeic acid-
O-methyl transferase, S-adenosyl-L-methionine
dependent methyltransferases, efc. Similarly, poppy cell
culture produces more sanguinarine in response to fungal
elicitor (Desgagne-Penix et al. 2010). A list of proteins
involved in SM synthesis is given in Table 3 Suppl. It is
supposed that an increased content of SMs is involved in
plant protection by modulating antioxidant system and
chaperone proteins.

leap forward to reveal molecular mechanism of plant
adaptation to extreme environmental conditions at high
altitude. However, complex studies of “omics” in
different developmental stages and under variable stress
conditions will be required for better understanding
signalling pathways. Successful acclimation of medicinal
plants to the alpine environment has raised many key
questions, which continue to remain unanswered. For
example, what are morphological, physiological, and
biochemical characteristics acquired by medicinal plants
for stress tolerance at high altitude? How many and
which type of proteins are involved in signalling
pathways for stress tolerance? Is there any post-
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translational modification of proteins, particularly
phosphorylation involved in plant adaptations? How
differently do the cell organelles integrate their signals to
regulate nuclear gene expression and other cellular
activities? To what extent does the SMs content
contribute to plant adaptations along altitude gradient?
What type of antifreeze proteins are involved in survival
at low temperature? Does epigenetic reprogramming play
any role in plant survival at high altitude environment?
These questions need to be addressed for establishment of
a mechanistic model of plant survival under extreme
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