

Sulfur dioxide acts as an antioxidant and delays programmed cell death in wheat aleurone layers upstream of H₂S and NO signaling pathways

K.-K. SUN, D.-B. ZHU, G.-F. YAO, K.-D. HU, and H. ZHANG*

School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, P.R. China

Abstract

Sulfur dioxide is a widespread air pollutant and it also acts as a signaling molecule in various processes in mammals. However, the role of SO₂ in programmed cell death (PCD) in plants is unclear. Here we studied the role of SO₂ in gibberellin (GA)-treated wheat aleurone layers. The results showed that 100 μM SO₂ donor (NaHSO₃/Na₂SO₃) could effectively delay PCD and inhibit the coalescence of small protein storage vacuoles (PSVs) in aleurone cells treated with GA. Also, SO₂ could reduce the accumulation of hydrogen peroxide and superoxide anion in GA-treated aleurone layers. In this process, SO₂ could sustain higher activities of catalase, guaiacol peroxidase, ascorbate peroxidase, and superoxide dismutase and lower activities of lipoxygenase and polyphenol oxidase by comparing with GA alone. In addition, an induction of endogenous H₂S and NO was observed in SO₂-treated aleurone layers. The application of NO scavenger cPTIO could accelerate PCD in SO₂ or H₂S treated aleurone cells, suggesting that NO alleviated PCD by acting downstream of SO₂ and H₂S. In conclusion, these results imply that SO₂ could delay PCD in GA-treated wheat aleurone layers by enhancing cellular antioxidative capacity, and H₂S/NO signals act downstream of SO₂.

Additional key words: ascorbate peroxidase, catalase, gibberellic acid, protein storage vacuoles, guaiacol peroxidase, reactive oxygen species, superoxide dismutase.

Introduction

Cereal grain aleurone layers play a critical role in synthesizing and secreting hydrolytic enzymes that degrade storage reserves in the endosperm to nourish the enlarging and differentiating embryo (Jones and Jacobsen 1991). After hydrolase synthesis is completed, aleurone cells undergo programmed cell death (PCD), a process which is tightly regulated by gibberellic acid (GA) and abscisic acid (ABA). ABA slows down the process of aleurone cell death, while GA triggers it (Bethke *et al.* 1999). During germination, protein storage vacuoles (PSVs) rapidly hydrolyze vacuolar storage proteins and lipids (Kuo *et al.* 1996). Meanwhile, smaller PSVs coalesce with each other and finally form a single large vacuole which occupies almost the entire volume of the

cell. Reactive oxygen species (ROS), such as superoxide anion (O₂^{·-}) and hydrogen peroxide (H₂O₂), also play key roles in PCD of aleurone cells (Del Río *et al.* 1998, Jiménez *et al.* 1998). The activities of ROS scavenging enzymes decrease and ROS accumulates in GA-treated aleurone cells, implying that reduced ability to scavenge ROS is the cause of GA-induced PCD (Fath *et al.* 2001).

Sulfur dioxide is a widespread air pollutant generated as a by-product of industrial processes and accumulating evidence has shown that SO₂ plays multifaceted biological functions in animals (Zhang *et al.* 2011). Sulfur is a nutritional element in plants and small amount of SO₂ can be absorbed *via* stomata and assimilated during synthesis of amino acids, proteins, and vitamins

Submitted 12 November 2017, last revision 21 January 2018, accepted 6 February 2018.

Abbreviations: ABA - abscisic acid; APX - ascorbate peroxidase; CAT - catalase; cPTIO - 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; DAF-FM DA - 3-amino, 4-aminomethyl-2',7'-difluorescein; DCHF-DA - 2',7'-dichlorofluorescein diacetate; GA - gibberellic acid; LOX - lipoxygenase; PCD - programmed cell death; POD - guaiacol peroxidase; PSVs - protein storage vacuoles; ROS - reactive oxygen species; SOD - superoxide dismutase; WSP-1 - 3'-methoxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-6'-yl 2-(pyridin-2-ylsulfanyl) benzoate.

Acknowledgements: This work was supported by grants from the National Natural Science Foundation of China (31670278, 31271803, 31470013, 31300133). We thank Russell Jones, University of California in Berkeley, for the revision of the manuscript. The first two authors contributed equally to this work.

* Corresponding author; fax: (+86) 551 62901043, e-mail: hzhanglab@hfut.edu.cn

(Rausch and Wachter 2005, Haworth *et al.* 2010). Sulfate can also be absorbed by roots *via* high-affinity transporters and reduced to sulfite (Rausch and Wachter 2005). In plants, exposure to high doses of SO₂ can lead to chlorophyll destruction, tissue death, and yield reduction (Van der Kooij *et al.* 1997, Noji *et al.* 2001). More recently, it has been shown that SO₂ can be involved in transcriptome reprogramming in grape (Giraud *et al.* 2012) and in stress responses to aluminum and cadmium in wheat (Hu *et al.* 2015, Zhu *et al.* 2015). These studies suggest that SO₂ might act as a signaling molecule in plants.

Nitric oxide, carbon monoxide, and hydrogen sulfide have been identified as signaling molecules involved in

antioxidative defense in plants (Delledonne 2005, Sa *et al.* 2007, Hu *et al.* 2012). Several reports showed that NO, CO, and H₂S could also delay PCD in aleurone cells of barley and wheat grain (Beligni *et al.* 2002, Wu *et al.* 2011, Xie *et al.* 2014, Zhang *et al.* 2015, Zhu *et al.* 2015). Given the functional similarity between SO₂ and H₂S, or NO in animal cells, we speculate that rather than just acting only as a harmful gas, SO₂ might also act as a signaling molecule in regulating plant PCD. In this study, we investigated the alleviating effect of SO₂ treatment on GA-induced PCD in wheat aleurone cells by analyzing the antioxidative system. The interactions between the H₂S, NO, and SO₂ in aleurone PCD are also considered.

Materials and methods

Wheat (*Triticum aestivum* L.) seeds were kindly supplied by the *Anhui Aidi Agricultural Technology Company*, Hefei, Anhui province, China. NaHSO₃/Na₂SO₃ (1:3) was used as sulfur dioxide (SO₂) donor according to Laisk *et al.* (1988). SO₂ donor and gibberellin A3 (GA₃, abbreviated as GA) were purchased from Sigma (St. Louis, USA). Grains were surface-sterilized as described by Chrispeels and Varner (1967). Embryo end of the grain was removed and de-embryonated half-grains were imbibed in Petri dishes in sterile water at 25 °C for 2 d. Aleurone layers were gently isolated by scraping away the starchy endosperm with metal spatulas and were incubated in a medium containing 20 mM CaCl₂ and 20 μM GA with various concentrations of SO₂ donor for time indicated in figures.

For cell viability assay and visualization of PSVs, aleurone layers after incubation in sterile water at 25 °C for 2 d were treated with SO₂ donor (0, 10, 50, 100, 200, 500 μM) + 20 μM GA + 20 mM CaCl₂ for 24, 72, and 120 h. To determine the number of dead cells, aleurone layers were stained with 0.4 % trypan blue for 10 min and washed extensively with 20 mM CaCl₂. The percentage of dead cells was determined by calculating the percentage of blue or purple cells. The PSVs were observed with a *Nikon ECLIPSE 80i* microscope (*Nikon Corporation*, Kyoto, Japan).

To determine H₂O₂ and O₂^{·-}, the isolated wheat aleurone layers were incubated in 20 μM GA or GA + 100 μM SO₂ donor at 25 °C for 120 h. H₂O₂ content and O₂^{·-} production were determined every 24 h according to Zhu *et al.* (2015). Total ROS content was visualized following the method of LeBel *et al.* (1992). Aleurone layers were stained with 5 μM ROS fluorescent probe 2',7'-dichlorodifluorescein diacetate (DCHF-DA) in 20 mM CaCl₂ at 37 °C in the dark for 20 min and rinsed three times with 20 mM CaCl₂. The fluo-rescence was observed by a *Nikon Eclipse 80i* micro-scope (excitation at 488 nm and emission at 525 nm).

Twenty aleurone layers were ground to fine powder in

liquid nitrogen and then extracted in 2 cm³ of 50 mM phosphate buffer (pH 7.8), 1 mM ethylene diamine tetraacetic acid (EDTA), and 1 mM phenylmethylsulfonyl fluoride (PMSF). The homogenate was centrifuged at 12 000 g and 4 °C for 30 min, and the supernatant was used for the enzyme activity assay. Activities of catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), and lipoxygenase (LOX, EC 1.13.11.12) were determined every 24 h till 120 h by the procedures described by Hu *et al.* (2012). Activity of superoxide dismutase (SOD, EC 1.15.1.1) was assayed according to Wang and Yang (2006) and polyphenol oxidase (PPO) activity was measured according to Benjamin and Montgomery (1973). One unit of CAT, POD, APX, SOD, LOX, and PPO activities was defined as an increase or decrease of absorbance by 0.01 value per minute.

To detect endogenous H₂S and NO in wheat aleurone layers, protoplasts were prepared as described previously (Bethke *et al.* 1999). Fresh protoplasts were treated with 20 μM GA or 20 μM GA + 100 μM SO₂ donor for 24 and 48 h, respectively. The isolated protoplasts were incubated in 10 μM H₂S fluorescent probe 3'-methoxy-3-oxo-3H-spiro [isobenzofuran-1,9'-xanthen]-6'-yl 2-(pyridin-2-yl-disulfanyl) benzoate (WSP-1, kindly bestowed by Prof. Jian Chen, Jiangsu Academy of Agricultural Sciences, Nanjing, China) according to the method of Li *et al.* (2014) or in 10 μM NO fluorescent probe 3-amino, 4-amino-methyl-2',7'-difluorescein (DAF-FM DA, Beyotime, Shanghai, China) at 37 °C in the dark for 20 min, then washed three times with distilled water. The *in situ* fluorescence of WSP-1 (excitation at 465 nm, emission at 515 nm) or DAF-FM DA (excitation at 495 nm, emission at 515 nm) was observed using a *Nikon Eclipse 80i* fluorescence microscope.

NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; 300 μM) was used to scavenge NO in wheat aleurone layers. Aleurone

layers were randomly classified into 6 groups with 20 layers in each and subjected to different culture conditions and 50 μ M NaHS was used as H_2S donor. The first group was treated with 20 μ M GA + 20 mM CaCl₂, the second group with 20 μ M GA + 20 mM CaCl₂ + 50 μ M H₂S donor, the third group with 20 μ M GA + 20 mM CaCl₂ + 100 μ M SO₂ donor, fourth group with 300 μ M cPTIO + 20 μ M GA + 20 mM CaCl₂, fifth group with 300 μ M cPTIO + 20 μ M GA + 20 mM CaCl₂ + 50 μ M H₂S donor, and sixth group with 300 μ M cPTIO +

20 μ M GA + 20 mM CaCl₂ + 100 μ M SO₂ donor. Each group was incubated at above conditions at 25 °C for 24 h. Aleurone layers were stained with trypan blue and photographed for cell viability determination.

Statistical significance was tested by one-way ANOVA and the results are expressed as the means \pm standard deviations (SDs) of three independent experiments. Fisher's least significant differences (LSDs) were calculated following a *t*-test (at $P < 0.01$ or $P < 0.05$).

Results

To investigate the effect of SO₂ on GA-induced PCD in wheat aleurone layers, different concentrations of the SO₂ donor NaHSO₃/Na₂SO₃ (0, 10, 50, 100, 200 and 500 μ M) were applied. Wheat aleurone cells were stained with trypan blue to determine cell viability (Fig. 1A, Fig. 1 Suppl.). Treatment of wheat aleurone with GA for 24 h resulted in 21 % of dead cells, whereas SO₂ donor treatment ranging from 10 to 200 μ M led to about 10 % cell death. However, comparable dead cell percentage to GA group was observed in 500 μ M SO₂ plus GA treatment. The percentage of dead cells in GA group increased from 26 to 44 % when treatment duration increased from 72 to 120 h. However, the percentage of dead cells with GA + 100 μ M SO₂ treatment was only 16 and 26 % after 72 and 120 h, respectively (Fig. 1A). Thus, 100 μ M SO₂ could effectively delay GA-induced PCD process in wheat aleurone layers, and this concentration was used in following experiments.

GA induces coalescence and enlargement of PSV in aleurone protoplasts whereas ABA inhibits this process (Bethke *et al.* 1999). Cell death occurs only after cells become highly vacuolated. As shown in Fig. 1B, PSVs in wheat aleurone cells were enlarged already after GA treatment for 24 h. However, PSVs remained smaller and dispersed after GA + SO₂ treatment for 24 h. After 72 h incubation, many aleurone cells in GA group contained large vacuoles, while there were still a lot of granular PSVs in GA + SO₂ group. This indicates that SO₂ can inhibit the coalescence of PSV and maintain the stability of cell structure.

In aleurone cells, ROS, especially H₂O₂, were found to stimulate the process of PCD (Bethke and Jones 2001) and Fig. 2A,B shows the changes of H₂O₂ content and O₂^{•-} production in wheat aleurone cells under GA or GA + SO₂ treatments. H₂O₂ content under GA treatment rapidly increased and reached the maximum at 48 h, followed by a decline at 96 h. An increase in H₂O₂ content was also observed in GA + SO₂-treated cells followed by a drop at 72 h and it was significantly ($P < 0.5$) lower than that under GA alone (at 72 and 96 h). The O₂^{•-} production maintained at a stable level during the first 72 h in GA + SO₂ treatment, and then declined at

96 h followed by a slight increase. The production of O₂^{•-} in GA treatment was significantly higher than that at GA + SO₂ at 48 and 96 h. Moreover, DCHF-DA fluorescence steadily increased in GA treatment during 96 h of

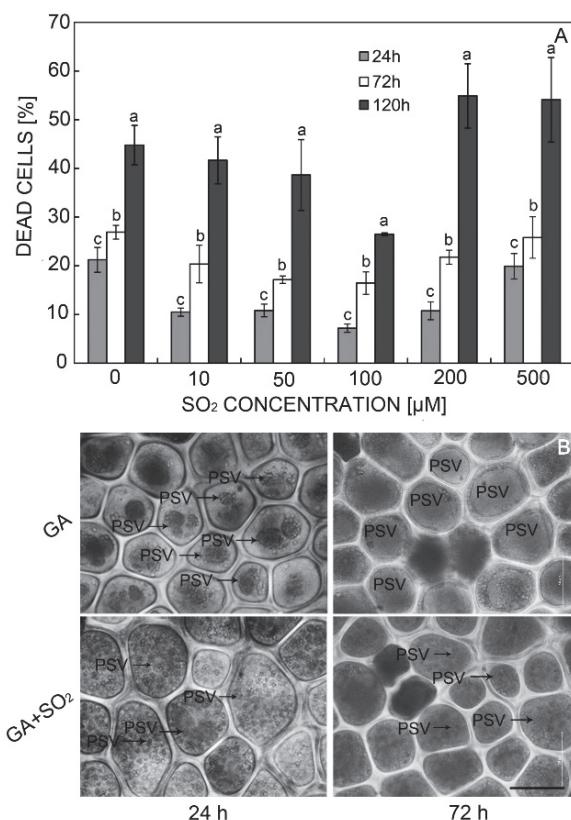


Fig. 1. Effects of SO₂ donor on cell viability and protein storage vacuoles (PSVs) of 20 μ M GA-treated wheat aleurone layers. Aleurone layers were also treated with different concentrations of SO₂ donor (0, 10, 50, 100, 200, and 500 μ M) for 24, 72, and 120 h. A - The percentage of dead cells after staining with trypan blue (at each time point 100 cells were counted, and different letters indicate statistically significant differences at $P < 0.05$). B - Effects of SO₂ donor on PSVs in wheat aleurone cells incubated in 20 μ M GA alone (GA) or in 20 μ M GA + 100 μ M SO₂ (GA+SO₂) for 24 and 72 h. PSVs were observed with the Nikon ECLIPSE 80i microscope. Bar = 50 μ m.

incubation, whereas the fluorescence was weakened in GA+SO₂-treated aleurone cells (Fig. 2 Suppl.). Thus, SO₂ could effectively inhibit ROS accumulation in wheat aleurone cells.

Further, to study the effects of SO₂ on antioxidative capability in cells, activities of antioxidant enzymes were measured. The CAT activity increased rapidly under both treatments during the first 48 h followed by a decrease. However, the CAT activity sustained significantly higher under GA+SO₂ treatment at 24, 72, 96, 120 h (Fig. 2C). The POD activities in GA-treated aleurone layers increased gradually during the entire period of incubation, while under GA+SO₂ treatment, the POD

activity was increased till 72 h followed by a decline. For instance, POD activity in GA+SO₂ treated layers was about two-fold of that in GA treated at 48 and 72 h (Fig. 2D). Regardless of treatments, APX activities increased quickly and peaked at 48 h, followed by a decline. However, the activity of APX under GA+SO₂ treatment was maintained higher than under GA alone since 72 h (Fig. 2E). The SOD activity under both treatments increased steadily till 48 h followed by a decrease. However, SOD activity under GA+SO₂ treatment was significantly higher than that under GA alone at 48, 72, and 120 h (Fig. 2F). However, the LOX activity under GA+SO₂ treatment decreased steadily until

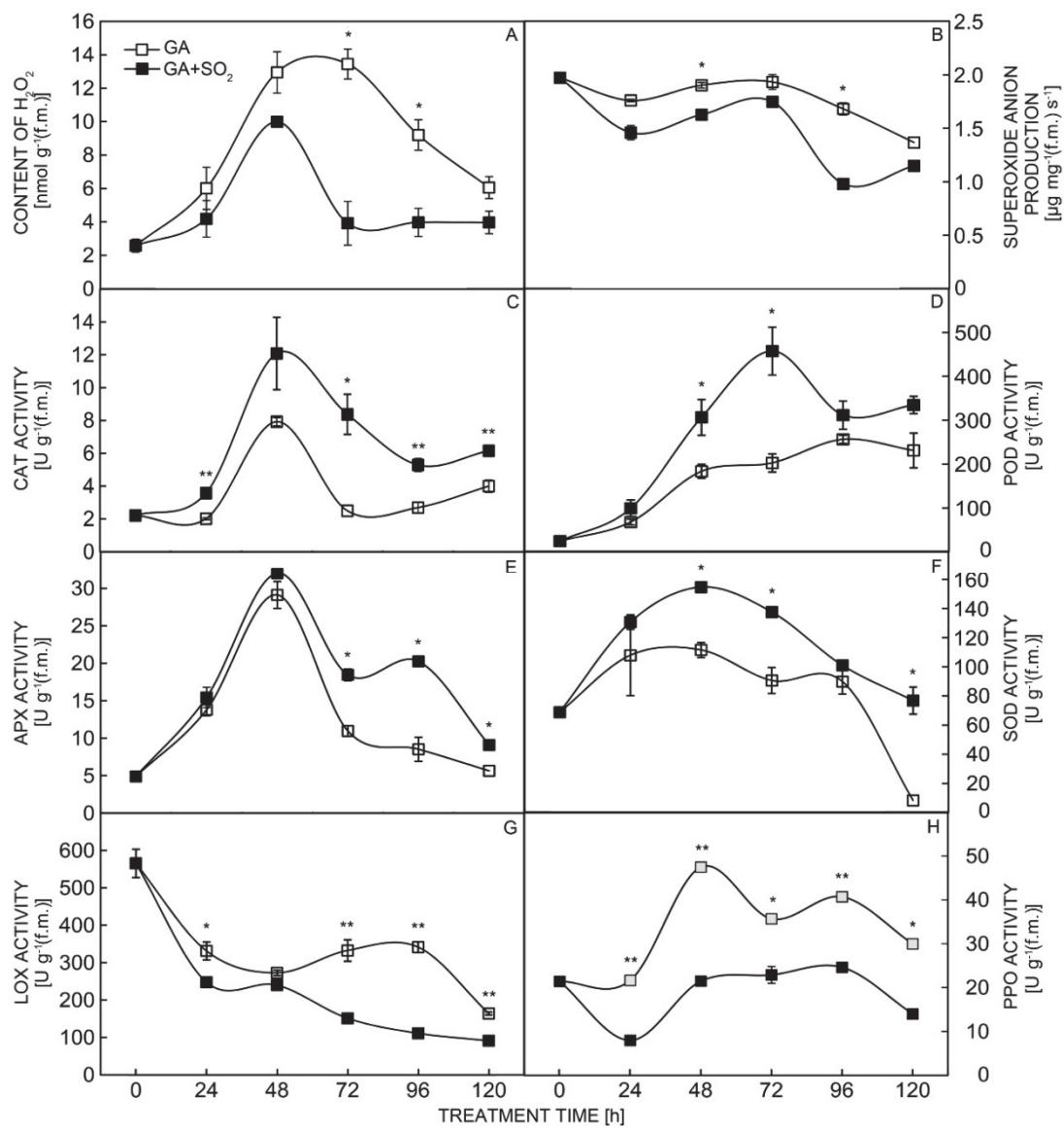


Fig. 2. Effects of SO₂ on the content of hydrogen peroxide (H₂O₂; A), the production of superoxide anion (O₂^{·-}; B), and the activities of catalase (CAT; C), guaiacol peroxidase (POD; D), ascorbate peroxidase (APX; E), superoxide dismutase (SOD; F), lipoxygenase (LOX; G), and polyphenol oxidase (PPO; H) in wheat aleurone layers. Aleurone layers were treated with 20 μM GA (GA) or 20 μM GA + 100 μM SO₂ donor (GA+SO₂) for 0, 24, 48, 72, 96 and 120 h. Means ± SDs ($n = 3$). The symbols * and ** stand for significant differences between GA and GA+SO₂ at $P < 0.05$ and $P < 0.01$, respectively.

120 h and was significantly lower than that under GA treatment during the whole incubation period except 48 h (Fig. 2G). The PPO activity increased rapidly and peaked at 48 h under GA treatment followed by a decrease at 120 h. Under GA+SO₂ treatment, the PPO activity was stable from 48 h to 96 h followed by a decline (Fig. 2H). In general, GA+SO₂ treatment increased the activities of CAT, POD, APX, and SOD and decreased the activities of LOX and PPO.

Fluorescent probes WSP-1 and DAF-FM DA were used to detect endogenous content of H₂S and NO, respectively. The fluorescence showing the presence of H₂S in wheat aleurone protoplasts treated with GA+SO₂ was higher compared to those treated with GA alone at 24 and 48 h of incubation (Fig. 3A). Similarly, GA+SO₂ treatment induced higher NO fluorescence in aleurone

protoplasts compared with GA treatment at 24 and 48 h (Fig. 3B). The results suggest that SO₂ treatment induced production of H₂S and NO in wheat aleurone cells.

NO was found to delay GA-induced PCD in barley aleurone layers (Beligni *et al.* 2002). To study whether NO is also involved in the role of SO₂ in alleviating PCD of wheat aleurone layers, cPTIO, a scavenger of NO, was applied. As shown in Fig. 3C,D, the percentage of dead cells in GA treatment reached 17 %, which was significantly higher than that under GA+H₂S (6 %) and GA+SO₂ (9 %) treatment. When cPTIO was applied, dead cell percentage increased significantly to 13 and 17 % for GA+H₂S and GA+SO₂ groups, respectively. The results suggest the involvement of NO in the PCD-alleviating effect of SO₂ and H₂S.

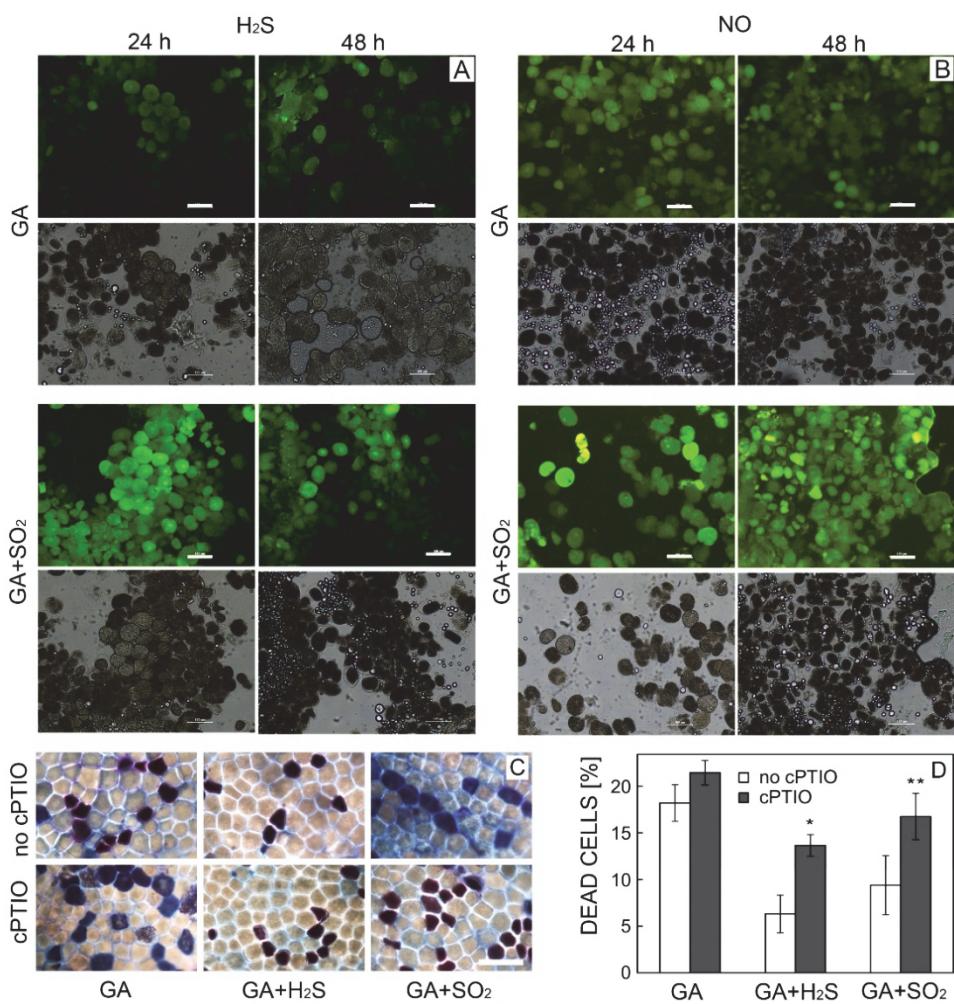


Fig. 3. Effects of SO₂ donor on accumulation of H₂S and NO in wheat aleurone layers and the application of NO scavenger cPTIO on aleurone cell viability. Fresh protoplasts treated with 20 μ M GA (GA) or 20 μ M GA + 100 μ M SO₂ donor (GA+SO₂) for 24 or 48 h were incubated with the probes WSP-1 or DAF-FM DA to detect endogenous H₂S (A) and NO (B) by fluorescence microscopy. Wheat aleurone layers were treated with 20 μ M GA (GA), 20 μ M GA + 50 μ M H₂S donor (GA+H₂S), 20 μ M GA + 100 μ M SO₂ (GA+SO₂), with or without NO scavenger cPTIO for 24 h. Aleurone layers were stained by trypan blue and photographed (C). Percentages of dead cells (D). The data at each time point are from three aleurone layers in which 100 cells were counted. The symbols * and ** stand for significant differences between treatments with and without cPTIO at $P < 0.05$ and $P < 0.01$, respectively. Bar = 100 μ m.

Discussion

As a plant macronutrient, sulfur (S) is important for crop yield. Sulfur can be absorbed by roots in the form of sulfate or atmospheric SO₂ via the stomata (Rausch and Wachter 2005). Sulfite, a less oxidized form than sulfate, is an intermediate in the assimilation of S and it is cytotoxic causing decline of photosynthesis and cell damage, even apoptosis (Leustek *et al.* 2000). Low concentrations of SO₂ have been found to participate in various physiological processes in animals (Zhang *et al.* 2011). In our previous study, SO₂ could alleviate aluminum stress in wheat grains by increasing their antioxidative capability (Zhu *et al.* 2015). Cereal aleurone layers undergo GA-stimulated PCD during germination and many signals are found to regulate PCD in cells including NO, ROS, and H₂S (Fath *et al.* 2002, Ishibashi *et al.* 2012, Xie *et al.* 2014). In the present work, SO₂ donor effectively alleviated PCD in GA-treated wheat aleurone layers and the optimal concentration was 100 μM. Enlarged PSVs are one of the significant characteristics of PCD (Bethke *et al.* 1999). Consistently, we observed that many PSVs under GA treatment coalesced and formed large vacuoles after 72 h, whereas SO₂ significantly alleviated this process, similarly to ABA, which can also postpone PCD in aleurone layers (Lee *et al.* 2015).

The ROS are found to function as signal molecules in plants, especially H₂O₂ is involved in PCD in aleurone cells (Bethke and Jones 2001). Consistent with the previous observations (Fath *et al.* 2002), our results showed that GA treatment caused overproduction of ROS in wheat aleurone cells and SO₂ significantly alleviated the accumulation of H₂O₂ (Fig. 2A, Fig. 2 Suppl.) and the production of O₂^{•-} (Fig. 2B, Fig. 2 Suppl.). The data indicated that SO₂ could reduce oxidative stress in wheat aleurone layers and so alleviate their PCD.

Reduced ability to scavenge ROS contributes to PCD in GA-treated aleurone cells (Fath *et al.* 2002). Thus, a suite of enzymes that scavenge ROS were determined in wheat aleurone cells and higher activities of CAT, APX, SOD, and POD were observed in GA+SO₂ group (Fig. 2C-F). The elevated activities of antioxidative enzymes eliminated ROS accumulation and maintained more balanced redox state in cells. The LOX, which catalyzes oxygenation of polyunsaturated fatty acids into lipids, is an important indicator of lipid peroxidation (Andreou and Feussner 2009). In the present study, we found that

aleurone cells treated with GA+SO₂ sustained lower LOX activity compared with GA group (Fig. 2G), suggesting less lipid peroxidation in cells. The PPO is an important enzyme in the catalytic oxidation of phenolics to brown-colored pigments (Nguyen *et al.* 2003). The PPO activity in wheat aleurone layer was lower under GA+SO₂ treatment than under GA alone, implicating that SO₂ postponed the browning process in aleurone cells (Fig. 2H). Taken together, these data imply that SO₂ donor delayed cell death by modulation of the antioxidant system. Similarly, endogenous SO₂ plays a protective role in the pathogenesis of animals (Jin *et al.* 2008).

Previous reports showed that NO and H₂S delay PCD in barley and wheat aleurone cells (Beligni *et al.* 2002, Xie *et al.* 2014). Besides, Wei *et al.* (2015) reported that NO is involved in the apoptosis induced by SO₂ in *Tagetes erecta* guard cells and *Pinus silvestris* needles emit H₂S when trees are subjected to relatively low concentration of SO₂ in the field (Hällgren and Fredriksson 1982). Further, sulfite can be reduced by sulfite reductase to produce the fully reduced sulfide form (Rausch and Wachter 2005). In this study, we found that SO₂ donor enhanced content of NO and H₂S, suggesting that NO and H₂S might participate in PCD alleviation caused by SO₂. The NO scavenger cPTIO was used to eliminate the endogenous NO, and the result proved that endogenous NO was involved in the PCD-alleviating role of SO₂. Thus we speculated that SO₂ delayed PCD by production of H₂S and SO₂, and H₂S could coordinately delay PCD in wheat aleurone cells. In all, the results suggest that SO₂ acts upstream of H₂S and NO in alleviating PCD in wheat aleurone cells.

In summary, our data showed that the SO₂ donor at certain concentrations alleviated PCD of GA-treated wheat aleurone cells by reducing ROS accumulation through enhanced activities of antioxidant enzymes and decreased LOX. The involvement of H₂S and NO in SO₂-treated aleurone layers suggest the interplay among SO₂, H₂S, and NO signaling pathways.

It is speculated that the delayed PCD of aleurone cells due to SO₂ could be positive for germination and embryo development, because SO₂ is able to stimulate wheat seed germination under abiotic stresses (Zhang *et al.* 2015). Similarly, H₂S was found to promote seed germination and meanwhile delayed PCD in wheat aleurone layers (Xie *et al.* 2014).

References

Andreou, A., Feussner, I.: Lipoxygenases – structure and reaction mechanism. - *Phytochemistry* **70**: 1504-1510, 2009.
 Beligni, M.V., Fath, A., Bethke, P.C., Lamattina, L., Jones, R.L.: Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. - *Plant Physiol.* **129**: 1642-1650, 2002.
 Benjamin, N.D., Montgomery, M.W.: Polyphenol oxidase of Royal Ann cherries: purification and characterization. - *Food Sci.* **38**: 799-806, 1973.
 Bethke, P.C., Jones, R.L.: Cell death of barley aleurone

protoplasts is mediated by reactive oxygen species. - *Plant J.* **25**: 19-29, 2001.

Bethke, P.C., Lonsdale, J.E., Fath, A., Jones, R.L.: Hormonally regulated programmed cell death in barley aleurone cells. - *Plant Cell* **11**: 1033-1046, 1999.

Chrispeels, M.J., Varner, J.E.: Gibberellic acid-enhanced synthesis and release of alpha-amylase and ribonuclease by isolated barley and aleurone layers. - *Plant Physiol.* **42**: 398-406, 1967.

Del Río, L.A., Pastori, G.M., Palma, J.M., Sandalio, L.M., Sevilla, F., Corpas, F.J., Jiménez, A., López-Huertas, E., Hernández, J.A.: The activated oxygen role of peroxisomes in senescence. - *Plant Physiol.* **116**: 1195-1200, 1998.

Delledonne, M.: NO news is good news for plants. - *Curr. Opin. Plant Biol.* **8**: 390-396, 2005.

Fath, A., Bethke, P., Beligni, V., Jones, R.: Active oxygen and cell death in cereal aleurone cells. - *J. exp. Bot.* **53**: 1273-1282, 2002.

Fath, A., Bethke, P.C., Jones, R.L.: Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. - *Plant Physiol.* **126**: 156-166, 2001.

Giraud, E., Ivanova, A., Gordon, C.S., Whelan, J., Considine, M.J.: Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses. - *Plant Cell Environ.* **35**: 405-417, 2012.

Hällgren, J.E., Fredriksson, S.A.: Emission of hydrogen sulfide from sulfur dioxide-fumigated pine trees. - *Plant Physiol.* **70**: 456-459, 1982.

Haworth, M., Gallagher, A., Elliott-Kingston, C., Raschi, A., Marandola, D., McElwain, J.C.: Stomatal index responses of *Agrostis canina* to CO₂ and sulphur dioxide: implications for palaeo-[CO₂] using the stomatal proxy. - *New Phytol.* **188**: 845-855, 2010.

Hu, K.D., Bai, G.S., Li, W.J., Yan, H., Hu, L.Y., Li, Y.H., Zhang, H.: Sulfur dioxide promotes germination and plays an antioxidant role in cadmium-stressed wheat seeds. - *Plant Growth Regul.* **75**: 271-280, 2015.

Hu, L.Y., Hu, S.L., Wu, J., Li, Y.H., Zheng, J.L., Wei, Z.J., Liu, J., Wang, H.L., Liu, Y.S., Zhang, H.: Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits. - *J. Agr. Food Chem.* **60**: 8684-8693, 2012.

Ishibashi, Y., Tawarayamida, T., Kondo, K., Kasa, S., Sakamoto, M., Aoki, N., Zheng, S.H., Yuasa, T., Iwaya-Inoue, M.: Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells. - *Plant Physiol.* **158**: 1705-1714, 2012.

Jiménez, A., Hernández, J.A., Pastori, G., Del Río, L.A., Sevilla, F.: Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. - *Plant Physiol.* **118**: 1327-1335, 1998.

Jin, H.F., Du, S.X., Zhao, X., Wei, H.L., Wang, Y.F., Liang, Y.F., Tang, C.S., Du, J.B.: Effects of endogenous sulfur dioxide on monocrotaline-induced pulmonary hypertension in rats. - *Acta pharmacol. sin.* **29**: 1157-1166, 2008.

Jones, R.L., Jacobsen, J.V.: Regulation of synthesis and transport of secreted proteins in cereal aleurone. - *Int. Rev. Cytol.* **126**: 49-88, 1991.

Kuo, A., Cappelluti, S., Cervantes-Cervantes, M., Rodriguez, M., Bush, D.S.: Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells. - *Plant Cell* **8**: 259-269, 1996.

Laisk, A., Pfanz, H., Schramm M.J., Heber, U.: Sulfur-dioxide fluxes into different cellular compartments of leaves photosynthesizing in a polluted atmosphere: I. Computer analysis. - *Planta* **173**: 230-240, 1988.

LeBel, C.P., Ischiropoulos, H., Bondy, S.C.: Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. - *Chem. Res. Toxicol.* **5**: 227-231, 1992.

Lee, S.E., Yim, H.K., Lim, M.N., Yoon, I.S., Kim, J.H., Hwang, Y.S.: Abscisic acid prevents the coalescence of protein storage vacuoles by upregulating expression of a tonoplast intrinsic protein gene in barley aleurone. - *J. exp. Bot.* **66**: 1191-1203, 2015.

Leustek, T., Martin, M.N., Bick, J.A., Davies, J.P.: Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. - *Annu. Rev. Plant Physiol. Plant mol. Biol.* **51**: 141-165, 2000.

Li, Y.J., Chen, J., Xian, M., Zhou, L.G., Han, F.X., Gan L.J., Shi, Z.Q.: In site bioimaging of hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral root formation. - *PLoS ONE* **9**: e90340, 2014.

Nguyen, T.B.T., Ketsa, S., Van Doorn, W.G.: Relationship between browning and the activities of polyphenoloxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. - *Postharvest Biol. Technol.* **30**: 187-193, 2003.

Noji, M., Saito, M., Nakamura, M., Aono, M., Saji, H., Saito, K.: Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants. - *Plant Physiol.* **126**: 973-980, 2001.

Rausch, T., Wachter, A.: Sulfur metabolism: a versatile platform for launching defence operations. - *Trends Plant Sci.* **10**: 503-509, 2005.

Sa, Z.S., Huang, L.Q., Wu, G.L., Ding, J.P., Chen, X.Y., Yu, T., Shi, C., Shen, W.B.: Carbon monoxide: a novel antioxidant against oxidative stress in wheat seedling leaves. - *J. integr. Plant Biol.* **49**: 638-645, 2007.

Van der Kooij, T.A.W., De Kok, L.J., Haneklaus, S., Schnug, E.: Uptake and metabolism of sulphur dioxide by *Arabidopsis thaliana*. - *New Phytol.* **135**: 101-107, 1997.

Wang, Y.S., Yang, Z.M.: Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of *Cassia tora* L. - *Plant Cell Physiol.* **46**: 1915-1923, 2006.

Wei, A., Fu, B., Wang, Y., Zhai, X., Xin, X., Zhang, C., Cao, D., Zhang, X.: Involvement of NO and ROS in sulfur dioxide induced guard cells apoptosis in *Tagetes erecta*. - *Ecotoxicol. Environ. Safety* **114**: 198-203, 2015.

Wu, M., Huang, J., Xu, S., Ling, T., Xie, Y., Shen, W.: Heme oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. - *J. exp. Bot.* **62**: 235-248, 2011.

Xie, Y., Zhang, C., Lai, D., Sun, Y., Samma, M., Zhang, J., Shen, W.: Hydrogen sulfide delays GA-triggered programmed cell death in wheat aleurone layers by the modulation of glutathione homeostasis and heme oxygenase-1 expression. - *J. Plant Physiol.* **171**: 53-62, 2014.

Zhang, R.Y., Du, J.B., Sun, Y., Chen, S., Tsai, H.J., Yuan, L., Li, L., Tang, C.S., Jin, H.F.: Sulfur dioxide derivatives depress L-type calcium channel in rat cardiomyocytes. - *Clin. exp. Pharmacol. Physiol.* **38**: 416-422, 2011.

Zhang, Y.X., Hu, K.D., Lv, K., Li, Y.H., Hu, L.Y., Zhang, X.Q., Ruan, L., Liu, Y.S., Zhang, H.: The hydrogen sulfide donor NaHS delays programmed cell death in barley aleurone layers by acting as an antioxidant. - *Oxid. Med. Cell Longev.* **2015**: 714756, 2015.

Zhu, D.B., Hu, K.D., Guo, X.K., Liu, Y., Hu, L.Y., Li, Y.H.,

Wang, S.H., Zhang, H.: Sulfur dioxide enhances endogenous hydrogen sulfide accumulation and alleviates oxidative stress induced by aluminum stress in germinating wheat seeds. - *Oxid. Med. Cell Longev.* **2015**: 612363, 2015.