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Abstract

Worldwide, a relevant surface of arable lands is facing salt stress, and this surface is increasing continuously due to both
natural and anthropogenic activities. Nitric oxide (NO) is a small, gaseous molecule with a plethora of physiological
roles in plants. In addition to its normal physiological functions, NO protects plants subjected to different environmental
cues including salinity. For example, NO mediates photosynthesis and stomatal conductance, stimulates the activity
of Na'/H" antiport in tonoplast, promotes the biosynthesis of osmolytes, and counteracts overaccumulation of reactive
oxygen species in plant cells under salt stress. Exogenous NO is also beneficial for plants subjected to salinity, in which
it increases salinity tolerance via growth promotion, reversing oxidative damage, and maintaining ion homeostasis. This
review provides a comprehensive picture of the NO-mediated mechanisms in plants, resulting in salinity tolerance with
a particular focus on the photosynthetic processes, the antioxidant patterns as well as the cross-talk with other regulatory
compounds in plant cells.
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Introduction

The increasing trend of population growth paralleled,
unfortunately, the rate of water and soil salinization,
posing serious concerns in a near future for the World’s
food production. Good quality water and soil is the pre-
requisite for a high yield of the plants. Conversely, one
of the most deleterious phenomena, in particular in arid
and semi-arid areas, is salinization of water and soils (Rui
and Ricardo 2017). During the last century a huge number
of aquifers and river basins have become unsuitable for
human consumption owing to high salinity. Moreover,
every year a large fraction of agricultural land is salinized
and becomes unusable (Vengosh 2003). So, in order to
enhance crop yield, it becomes necessary to find new
strategies for better plant performance in saline conditions

(Hanin ez al. 2016).

Nitric oxide (NO) is a redox-signaling molecule
involved in many physiological processes in plants,
and plays key roles in response to challenging growth
conditions, including salinity (Zhao et al. 2004, Zhang
et al. 2006b). In particular, it has been demonstrated that
NO can enhance salt tolerance through increasing activities
of proton-pump and Na’/H" antiport in the tonoplast
(Zhang et al. 2006b). In addition, NO is itself a reactive
species and can be either protective or toxic depending
to several factors including concentration, the plant
species, and the plant developmental stages (Zhao et al.
2007). Nitric oxide may therefore act as a chain breaker
to minimize the oxidative damage attributable to salt-
triggered oxidative stress (Zhao et al. 2007, Gadelha et al.
2017). This signaling molecule also interacts with other
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radicals, antioxidant compounds, and phytohormones
taking part to an orchestrated cross-talk between NO and
other molecules against salinity (Hasanuzzaman et al.
2018). For example, NO mitigates salt stress by regulating
amount of osmolytes and antioxidant enzymes in chickpea
plants (Ahmad et al. 2016). All these aspects suggest
that NO is a key metabolite in plant physiology and a
depth knowledge of the mechanisms underpinning NO
involvement against salinity are of crucial importance to
promote the cultivation of plants in marginal area prone to
salinity. The present literature survey aims at summarizing
the main findings about the physiological roles of NO in
plants suffering of salt stress with the scope to provide a
comprehensive picture related to the role of this gaseous
molecule under salinity, which could be useful for future
research on the topic.

Salt stress and its impacts on plants

Salt stress is one of the most predominating abiotic
stresses which lead to drastic loss in agriculture in terms
of crop yield, majorly in dry and semi dry areas. Hence
it is required to understand the various strategies which
help in combating salinity stress and developing salt
resistant plant cultivars (Tanveer ef al. 2018). Deposition
of excessive concentrations of salts leads to development
of initial stress symptoms in the roots: osmotic stress. In
the cytosol, long exposure of salt stress causes imbalance
of minerals and nutrients. Salt stress consequently leads to
oxidative burst due to the generation of reactive oxygen
species (ROS) (Acosta-Motos et al. 2017, Li et al. 2018,
Rattan et al. 2020). Additionally, uptake and accumulation
of excessive salt ions interference with many intracellular
metabolic processes. High salt concentration in the soil
causes osmotic imbalance which limits water uptake from
soil (Munns 2002). High concentration of Na' inhibits
the absorption of some nutrient elements. Meanwhile,
ionic and osmotic stress will also lead to an imbalance in
plant metabolism and above mentioned oxidative stress
(Chinnusamy et al. 2006). The salt stress decrease the
production capacity due retardation in growth and finally
can cause the death of the plant. Salt stress adversely
disturbs virtually all facets of biological processes,
including photosynthesis, protein synthesis, and other
primary metabolism pathways (Chartzoulakis and Klapaki
2000, Tanveer et al. 2018, Rattan ez al. 2020). Additionally,
under high salt, the most immediate response is the decrease
in the cell expansion (Wang and Nii 2000). Parida and Das
(2005) showed that salinity disturbs plant photosynthesis
by negatively affecting carbon assimilation efficiency.
Thylakoid structure of chloroplasts also gets disrupted
under salt stress accompanied by reduction in the starch
content (Hernandez et al. 2002). The chloroplasts were
found to be aggregated together in the leaves of salt treated
tomato. Moreover, no or very low grana and thylakoid
structures were observed in chloroplasts (Khavari-Nejad
and Mostofi 1998).

NITRIC OXIDE AND SALINITY

Physiological roles of NO in plants

Nitric oxide stimulates development of plants by regulating
various growth parameters of primary root, hypocotyl,
mesocotyl, adventitious and lateral roots, leaves, and the
stem (Neil et al. 2008). For example, at low concentrations
of NO donor nitroprusside, an acceleration of growth was
noted for Arabidopsis thaliana primary root, whereas
inhibition of growth was observed at higher concentrations
(Yemets et al. 2009). It is established that NO participates
in differentiation of Zinnia elegans xylem by regulating
cell lignification and the programmed cell death (Ferrer
and Ros Barcelo 1999). In case of pathogen attack,
NO also regulates plant defense system by modulating
programmed cell death (Mur et al. 2005).

It is suggested that plants with elevated production of
NO enter the flowering stage somewhat later than plants
with physiologically normal NO content (He ef al. 2004).
Germinating and even non-germinating pollen grains
produce NO and nitrate required for the reproduction
process. The NO generation is possibly an important
component of the signaling system activated by pollen-
stigma interaction. Nitric oxide regulates the direction
of pollen tube growth, which is very important for
fertilization. It was found that interaction of NO produced
by the pollen with ROS generated by the pistil stigma can
initiate pollination through the onset of signaling cascades
between pollen grains and stigmas (Bright et al. 2009).
In mutant Arabidopsis plants (Atnosl) with defective NO
synthase, reduction in NO biosynthesis was observed
accompanied by declined plant growth and stomatal
movement. However, overexpression of 4¢tNOSI resulted
in recovery of plant growth due to NO mediated regulation
of plant biology (Guo et al. 2003), suggesting roles of this
gaseous molecule in plant growth and development. In
addition to normal physiological functions, NO regulates
plant growth and development under abiotic stresses
(Fancy et al. 2017, Sharma et al. 2020).

Nitric oxide and its physiological roles in plants
under salt stress

Nitric oxide plays key roles in mitigating harmful effects of
salinity in plants by regulating key physiological processes
like photosynthesis, antioxidative defense system and ion
homeostasis. The detailed description about NO mediated
regulation of plant biology under salt stress is discussed in
following sub-sections. The roles of NO in plants under
salt stress are summarized in Table 1.

Regulation of photosynthesis: Salt stress severely impact
the photosynthetic processes by decreasing chloroplast
activity, and hampering photosynthetic rate (Py), and
stomata conductance (g;) (Teixeira and Pereira 2007,
Chaves et al. 2009, Guidi et al. 2017, Papadakis et al.
2019, Sharma et al. 2019, Landi et al. 2020). Often,
stomata limitations to photosynthesis represent the first
effect of the osmotic stress promoted by Na“™ and CI
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Table 1. Nitric oxide induced changes in plant biology during salinity stress in various plants.

Effect of nitric oxide on plant biology

Plant species Reference

Enhanced activity of tonoplast H*-ATPase and Na'/H"* antiporter gene

Stimulated root elongation and germination rate
Increased in viability of leaf, enhancement in productivity
Enhancement in cytosolic K* content

Enhancement in proline synthesis

Enhanced accumulation of polyamines like spermidine

Enhanced activity of antioxidative enzymes and content of proline;

reduction in malondialdehyde content
Decreased Na™ content with simultaneous increase in K™ content

Zea mays (Zhang et al. 2006b)
(Kopyra and Gwo6zdz 2003)
(Uchida et al. 2002)

(Ruan et al. 2004)
(Wuetal 2011)

(Fan et al. 2013)
(Zeng et al. 2011)
(Guo et al. 2009)

Lupinus luteus

Oryza sativa

Triticum aestivum
Lycopersicom esculentum
Cucumis sativus

Brassica juncea

Kosteletzkya virginica

accumulation in plant tissues (Chaves et al. 2009, Sotiras
et al. 2019). In a second phase, when both ions accumulate
at toxic level, photosynthesis can be further reduced by
damages to chloroplast, and in particular to photosystem II
(Pompeiano et al. 2017).

Nitric oxide has been demonstrated to revert the
adverse effect of salinity to the photosynthetic machinery
in many instances. For example, gas exchange and
chlorophyll fluorescence parameters were found to be
less impaired in Hordeum vulgare and Lycopersicon
esculentum seedlings under saline conditions when treated
with exogenous NO (Zhang et al. 2006a, Wu et al. 2011).
Amelioration of photosynthesis was observed in plants
subjected to salinity by the application of NO with or
without sulfur (S) (Fatma et al. 2016a). However, maximal
increase in photosynthesis was noted with the combined
treatment of NO plus S. Nitric oxide independently or in
combination with S promoted the synthesis of glutathione,
assimilation of S, optimum production of NO and redox
state, which represent the bases of NO-triggered defensive
mechanism of mustard plants (Fatma ef al. 2016b).
Recent reports suggest that NO treatment reduced the salt
toxicity by enhancing the efficiency of photosynthetic
system in mustard plants (Jahan ez al. 2020). It has also
been demonstrated that application of NO increased
photosynthesis through increase of Rubisco activity
and g, (Fatma and Khan 2014). Nitric oxide induce the
expression of the plasma membrane H*-ATPase required
for abalanced K*:Na" ion ratio providing protection against
salt stress (Zhao et al. 2004). Indeed, the maintenance of
a balanced K" flux is essential to control stomata aperture
under salinity. The exogenous application of NO in plants
of Triticum aestivum induced stomatal opening that were
partially reversed by salt stress (Sehar ef al. 2019). In NO-
treated plants, the lower impact on stomata closure resulted
in a lower decline of Py when plants were subjected to
salinity. The authors hypothesized that application of NO
increased GSH content which played a role in cellular
redox homeostasis and regulation of stomatal movement.
GSH has also been reported to interact with ABA to
regulate stomata movements (Misra ef al. 2015).

NO responses also correlated with the amount of
nutrients available to the plant. According to Wang et al.
(2013) the improvement of the process of photosynthesis,
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biosynthesis of chlorophylls, and transpiration rate
depended upon the availability of Mg and Fe in perennial
ryegrass. Apart from this, exogenous treatment of NO
along with salicylic acid also stimulated the uptake and
translocation of Fe in Arachis hypogaea, even in the
presence of salt stress (Kong et al. 2014), which could
be a remarkable factor for salt-stress tolerance. The
mechanisms involved in regulation of photosynthesis by
NO under salt stress are shown in Fig. 1.

Regulation of reactive oxygen species and enzymatic
antioxidants: Against oxidative stress, NO plays a crucial
role in resisting the stress (Ahmad ef al. 2016, Sharma
et al. 2020). Salt stress causes changes in the assimilation
pathway of nitrates and sulphates by altering the expression
of various enzymes, further depressing their energy status,
and enhancing nitrogen and sulfur demands. Injuries
caused at cellular level are mainly due to the oxidative
damage generated by ROS produced in saline conditions.

Various detoxification strategies are developed by
plants growing under salinity, such as boosting up the
activities of certain antioxidative enzymes like superoxide
dismutase (SOD), guaiacol peroxidase (POD), catalase
(CAT), ascorbate peroxidase (APOX), glutathione
reductase (GR) along with certain non-enzymatic
antioxidants like tocopherols, glutathiones, ascorbates
which help in scavenging of free radicals (Nazar et al.
2015). Nitric oxide helps in regulation of salt induced
oxidative stress and increasing resistance of plants growing
in those challenging conditions. For example, when NO
is applied to maize plants, reduction in the content of
hydrogen peroxide was observed, accompanied by the
activation of antioxidative defense system of maize that led
to amelioration of free radical content and improvement in
cell viability (Farooq et al. 2009). Oxidative damage caused
by salt stress in Brassica juncea plants were significantly
overcome by the exogenous NO which further stimulated
the activities POD, SOD, APX, and GR (Zeng et al. 2011).
In Oryza sativa, NO treatment significantly alleviated salt
stress by modulating expression of antioxidative enzymes
resulting in enhanced salt resistance (Uchida et al. 2002).
The overview of mechanisms involved in regulation of
oxidative stress by NO is given in Fig. 2.



Regulation of other metabolites: Biosynthesis of proline
enhances in the cytosols with the treatment of NO. For
example, in Kosteletzkya virginica plants accumulation
of proline in cytosol was drastically stimulated under salt
stress when SNP was applied (Guo ef al. 2009). Similarly
in wheat plants, free radicals were efficiently scavenged
and stabilization of macromolecules occurs with
enhancing the content of proline after NO treatment under
salinity (Ruan ef al. 2002). Additionally, NO promote
accumulation of proline in coordination with sugars. For
example, in Lycopersicom esculentum, application of NO
resulted in enhanced proline and sugar content leading to
increase in salt tolerance (Wu et al. 2011). In tomato plants
retardation in the content of photosynthetic pigments were

NITRIC OXIDE AND SALINITY

reported due to salt stress, but enhanced content of proline
after NO treatment significantly ameliorated the negative
impacts of salinity (Wu ef al. 2010). Regulation of proline
accumulation by NO under salt stress is directly related to
the reduction of harmful ROS and better salt tolerance in
plants (Guo et al. 2009).

Glycine-betaine (GB) plays crucial role in regulation
of salt stress in plants. Nitric oxide also helps in regulating
the GB mediated stress responses in salt stressed
plants (Kumari et al. 2019). Further, these researchers
observed that transcription and activity of betaine
aldehydedehydrogenase (BADH) in light-grown seedling
cotyledons were found to be very high in comparison to
those seedlings which were grown in dark when facing
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the salinity stress. Application of diethylenetriamine,
a NO donor also contributed in maintaining the activity
of BADH, hence maintaining the homeostasis of GB.
It suggests a possible crosstalk between NO and GB
in counterattacking the salinity stress (Kumari et al.
2019). This modification in the GB content occurs after
application of NO due to BADH transcriptional regulation
or nitrosylation. Additionally, NO has potential to stimulate
the synthesis of osmolytes under salinity stress (Ruan ez al.
2004) and can also establish a relation between salt stress,
NO application/deposition and stimulation of osmolytes
like proline which further boost quenching of free radicals.

Polyamines are also involved in salt stress tolerance
and their regulation by NO further improves the salinity
resistance of plants. For example, in cucumber seedlings,
application of SNP triggered the biosynthesis and
accumulation of polyamines (Fan et al. 2013). These
researchers noticed that in comparison to control plants,
content of spermine, spermidine, and putrescine decrease
in the salt stressed plants in dose-dependent manner.
Additionally, in presence of NO, activity of polyamine
oxidase was also improved accompanied by enhancing
resistance to salt stress (Fan et al. 2013).

The role of NO in regulating leaf water content is
dependent upon abscisic acid (ABA) at low concentrations
of salts, whereas at high concentrations, maintenance of
leaf water is done by NO mediated closing the stomatal
aperture (Hua et al. 2004). For the regulation of stomatal
oscillations, ABA signaling is facilitated by NO in
guard cells. With reduction of the NO content, stomatal
closure induced by ABA is retarded (Steven et al. 2002).
The transpiration rate is retarded in various plants like
Salpichroa organifolia and Vicia faba by the application
of NO, which further causes closing stomata via ABA
modulated pathways (Garcia-Mata et al. 2001). However,
when inhibitors of NO were supplied, it reverse NO-
induced stomatal closure (Bright 2006).

Regulation of ions by nitric oxide under salt stress

As mentioned above, NO also regulates the ion balance
in plants resulting in better salt stress tolerance. In Zea
mays NO application resulted in improvement of the salt
resistance by enhancing the Na'/H* antiport along with
proton-pump activity of the tonoplast (Zhang et al. 2006b).
In sunflower seedlings, NO modulated the biochemical
responses under salt stress by regulating the ratio of Na*/
K* ions accompanied by better salt tolerance (David
et al. 2010). Nitric oxide also regulates ions like K,
Mg?*, Ca*"in plants facing salt stress. This NO mediated
ion regulation is further accompanied by a reduction in
oxidative stress and improvement of plant growth in terms
of better photosynthetic rate, chlorophyll content, stomatal
conductance, transpiration rate, and enhanced activities of
antioxidative enzymes (Khoshbakht et al. 2018).
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Conclusions and future perspectives

Though several NO-mediated mechanisms have been
described in plants subjected to salt stress, and most of
them are able to ameliorate plant growth and reproduction.
Among others, NO reacts and interacts with other
signaling compounds, describing a finely-tuned and
well-orchestrated network once plants experience saline
conditions. In addition, it contributes in regulating
H*-ATPase thereby balancing Na*/K* ratio under salinity
and promoting the biosynthesis of some osmolytes, which
can be useful to prevent salt-triggered water stress. Nitric
oxide also interacts with ROS, and has been shown to
regulate salt stress responses and programmed cell death.
It is conceivable that many other key aspects about this
versatile compound are yet to be described.

Further researches are necessary to deepen the
signaling behavior of NO in signal transduction in addition
to transcriptional regulation and ion detoxification. The
advancement of research focusing on NO might be helpful
in understanding the involvement of this compound in
plants under stress, thereby posing the bases to use NO as
a possible strategy to improve salt tolerance and valorize
marginal (salinized) lands. This might be helpful to both
counteract soil erosion and increase the productivity of
these marginal areas, in the attempt to contribute in food
supply to a raising human population.
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