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Abstract

Chilling stress is a major abiotic factor that limits the growth and productivity of melon (Cucumis melo L.). The application
of nitric oxide (NO) can enhance plant tolerance to chilling stress; however, the underlying molecular mechanisms for
this process remain poorly understood. In this study, RNA sequencing was performed on melon seedlings exposed to
control conditions, chilling stress, or chilling stress in the presence of NO donor sodium nitroprusside (SNP), to identify
NO-mediated transcript changes in response to chilling stress. The results identified 488, 1 012, and 1 589 differentially
expressed genes (DEGs) between plants in optimum conditions (CK) and chilling stress (CS) groups, plants in the CS and
chilling stress + SNP (CN) groups, and those in CK and CN groups, respectively. Through gene ontology (GO) database
and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses, the DEGs were classified as predominantly
involved in saccharide metabolism, biosynthesis of other secondary metabolites, lipid metabolism, amino-acid metabolism,
and signal transduction pathways. In addition, 39 genes related to sugar metabolism including those encoding UDP-
glucuronate-4-epimerase, B-glucosidase, glucuronosyltransferase, a-1,4-galacturonosyl transferase, and hexokinase, were
upregulated in the CK vs. CS comparison, and genes encoding fructose-bisphosphate aldolase and glucan-endo-1,3-f3-
glucosidase were upregulated in the CS vs. CN, and CK vs. CN comparisons. A gene encoding an EREBP-like factor was
upregulated in the CK vs. CS, CS vs. CN, and CK vs. CN comparisons. The expression profiles of 10 selected genes were
analyzed using real-time quantitative PCR, and the candidate gene expression patterns were consistent with the DEG
classification from RNA-seq. Overall, the data provide insight into the transcriptional regulation by exogenous NO in the
response of melon seedlings to chilling stress. The data from this study are relevant for further research on the molecular
mechanisms that underlie chilling resistance in melon plants.
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Introduction

Melon is one of the most economically important and
commonly consumed fruit crops in many countries, but
it is sensitive to and often suffers damage from chilling
stress, especially in the winter or early spring. Chilling
stress is a common environmental stress that can affect
crop growth and agricultural productivity, since it
can induce physiological, biochemical and molecular
responses (Sitnicka and Orzechowski 2014). Thus, it is
extremely important to enhance the chilling tolerance of
melon seedlings.

Chilling tolerance can be increased in plants by cold
acclimation, which results in multiple reprogramming

mechanisms, including changes in gene expression and
biochemical and physiological modifications (Zhu et al.
2007). Evidence suggests that nitric oxide (NO) production
plays a critical role in chilling tolerance (Cantrel et al.
2011, Zhao et al. 2011). Nitric oxide is a ubiquitous
reactive signaling molecule that is involved in diverse
developmental and physiological processes, and in various
plant responses to abiotic stresses, such as drought, salt,
temperature, and heavy metals (Siddiqui ef al. 2011, Shi
et al. 2012, 2014). NO participates in plant responses to
abiotic stresses most probably by inducing antioxidant
defense and by reducing the generation of reactive oxygen
species (ROS) (Filippou et al. 2013, Sun et al. 2015).
Recent studies have reported that NO treatment can
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enhance plant stress resistance by influencing polyamine
biosynthesis, chlorophyll content, and photosystem II
activity (Chen et al. 2013, Fan et al. 2013). Furthermore,
NO regulates genes that are involved in plant defense,
oxidative stress responses, and plant hormone signaling
(Lindermayr et al. 2005, Zago et al. 2006, Zeng et al.
2014, Hu et al. 2015, Li et al. 2019). Jian et al. (2016)
and Rizwan et al. (2018) reported that the application
of NO donor sodium nitroprusside (SNP) enhanced the
expression of CAT, APX, and SOD in Medicago truncatula
under salt stress and in rice under Ni-stress. Although
numerous studies have identified NO-responsive genes,
related information concerning the molecular mechanisms
of NO-induced chilling tolerance in melon plants is lacking
and it is crucial to improving melon breeding.

Currently, due to the availability of the complete melon
genome sequence and high-throughput RNA sequencing
(RNA-seq) technologies, a lot of genomic data concerning
melon fruit development and quality have been generated
(Garcia-Mas et al. 2012, Zhang et al. 2016, Shin et al.
2017). Yano et al. (2017) examined the transcriptome in
30 different tissues at 7 stages of melon fruit development
and identified 20 752 genes expressed in at least one tissue.
In addition, RNA-seq data have revealed responsive genes
or key pathways resulting from abiotic stress in melon. For
example, Wang et al. (2016) identified the gene expression
profiles in two muskmelon cultivars in response to salt
stress. Genes responding to chilling stress and their
corresponding pathways have been reported for other plant
species, including cassava (An et al. 2012), rice (Zhang
et al. 2012), watermelon (Xu et al. 2016), and Populus
simonii (Song et al. 2013). However, to our knowledge, few
transcriptome analyses have been reported on the response
of melon to chilling stress. Because of the importance of
melon as a crop, it is necessary to study NO-regulated and
chilling stress-responsive gene networks in this species;
therefore, this study investigated the transcriptional
responses of melon to NO and chilling stress by RNA-seq
analysis. The results represent a basis for improving its
tolerance to chilling stress.

Materials and methods

Seeds of melon (Cucumis melo L.) cv. XL-1 were produced
by our laboratory at Shanghai Academy of Agricultural
Science, Shanghai, China, rinsed thoroughly with distilled
water, and germinated in an incubator at a temperature of
30 °C. The germinated seedlings were then transferred
to plastic plates containing Vermiculite and grown in a
growth chamber at day/night temperatures of 30/20 °C, a
12-h photoperiod, an irradiance of 400 pmol m? s!, and
a relative humidity of 80 %. Plants were watered every
2 d with a 1/8-strength Hoagland solution (Hoagland
and Snyder 1933). When melon seedlings reached the
second true-leaf stage, the leaves were sprayed daily with
200 cm?® distilled water or 200 uM sodium nitroprusside
(SNP) for 3 d. On the fourth day, the plants were exposed
to chilling stress (6 °C for 3 h), the leaves of each group
were harvested, immediately frozen in liquid nitrogen, and
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stored at -70 °C for further analyses. Seedlings without
treatments were used as the control. All experiments
consisted of three replicates.

Total RNA was extracted using a mirVana miRNA
isolation kit (Ambion, Austin, TX, USA) following the
manufacturer’s protocol. The RNA integrity was evaluated
using an Agilent 2100 bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). The samples with an RNA
integrity number (RIN) > 7 were used for subsequent
analyses. The cDNA libraries were constructed using the
TruSeq Stranded mRNA LT Sample Prep kit (Illumina,
San Diego, CA, USA) according to the manufacturer’s
instructions. The libraries were sequenced on the //lumina
sequencing platform (HiSeqTM 2500 or Illumina HiSeq X
Ten), and 125 bp/150 bp paired-end reads were generated.
Three biological replicates were performed for RNA-seq.

Rawreads were processed by removing reads containing
adapters, reads containing poly-N and low-quality reads,
to obtain clean data (clean reads). The remaining high-
quality clean reads were aligned to the melon reference
genome sequences using HISAT software (Cock et al.
2009). The mapped reads were then reconstructed using
Cufflink (Conesa et al. 2005). All RNA-seq reads were
deposited at NCBI sequence read archive (SRA) database
under the accession number PRINAS53119.

Gene expressions were calculated for each sample using
RSEM software (McKenna et al. 2010). The differentially
expressed genes (DEGs) among the three samples were
identified using DESeq. The threshold of false discovery
rate < 0.05 and an absolute fold change value > 2 were
used as the threshold for DEG selection.

Gene ontology (GO) enrichment analysis was
performed using agriGO (Du et al. 2010); the Kyoto
encyclopedia of genes and genomes (KEGG) pathway
enrichment analysis was implemented by the KEGG
orthology-based annotation system (KOBAS) (Xie et
al. 2011). Significantly enriched pathways with respect
to DEGs were identified according to the criterion of a
corrected P-value < 0.05.

Total RNA was extracted from the same samples with
three biological replicates as those subjected to /llumina
RNA-seq using the mirVanaTM RNA isolation Kkit,
according to the manufacturer’s specifications. Total RNA
(2 pg) from each sample was used to synthesize cDNA
by M-MLV (TaKaRa, Dalian, China). Real-time PCR
was performed using LightCycler® 480 real-time PCR
instrument (Roche, Basel, Switzerland). The expressions
of mRNAs were normalized to that of the reference gene
Actin and were calculated using the 2 method (Livak
and Schmittgen 2001). Reactions were performed in a
GeneAmp® 9700 PCR system (Applied Biosystems, Foster
City, CA, USA). Primers used for all real-time quantitative
PCR experiments are listed in Table 1 Suppl.

Results

In this study, high-throughput transcriptomic sequencing
technology was used to investigate the molecular
mechanisms that regulate the effect of NO on the response
of Cucumis melo to chilling stress. Samples exposed to



chilling alone (CS), chilling in the presence of SNP (CN),
or controls (CK) were sequenced. In total, approximately
412 million raw reads were generated using the I//umina
HiSeq TM 2500 platform. After removing adapters, reads

50

10

S o

25

15

-log10 (P adjusted)

10

10

up: 206 A
down: 282
no-DEGs:18590

-up: 737
down: 275
'no-DEGs: 18076

© up: 1063
down: 526
no-DEGs: 17552

5 0 5 10
log2 (fold change)

EXOGENOUS NITRIC OXIDE AND CHILLING STRESS

containing poly-N, and low-quality reads, approximately
379 million clean reads were obtained, representing
91.99 % of the total raw reads (Table 2 Suppl.). The mean
proportion of bases with mass no less than 20 or 30 after
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Fig. 1. Differentially expressed genes (DEGs) between samples. 4 - The Volcano plot of DEGs. The x-axis represents the fold-change
of DEGs in different experimental groups, and the y-axis represents the P value (log.). Dots represent genes; the red dots represent
upregulated DEGs and the blue dots represent downregulated DEGs. B - The Venn diagram of DEGs. Total DEGs for each comparison
are shown in parentheses. C - The heat map of DEGs. Each row represents the log, value of the expression of a gene in different
treatments. Different gene expressions are displayed as a gradient ramp. A greater intensity of red indicates a higher gene expression;
increasing blue intensity represents a decreasing gene expression. CK - control samples; CS - samples exposed to chilling stress;
CN - samples exposed to chilling stress and 200 mM sodium nitroprusside. Each treatment consisted of three biological duplicates.
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Fig. 2. Gene ontology (GO) enrichment analysis of differentially expressed genes in different treatments. 4 - Comparative GO terms

between control (CK) and chilling stress (CS) treatment; B - comparative GO terms between CS and chilling stress + 200 mM SNP
(CN) treatment; C - comparative GO terms between CK and CN. The x-axis displays different GO terms and the y-axis indicates the

number of DEGs.
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filtration (Q20, Q30, respectively), and GC content were
96.66, 92.06, and 44.25 %, respectively (Table 3 Suppl.).
The high-quality reads were then mapped to the C. melo L.
genome and the mapped clean reads of the three data
sets ranged from 78.89 to 89.52 %. Among these reads,
78.05 to 88.42 % were uniquely mapped and were used
for further analysis. In the control group vs. chilling stress
treatment comparison, 488 DEGs were detected, with 206
DEGs being upregulated and 282 DEGs downregulated.
The number of DEGs between the CS group and the
CN group was 1 589, of which 1 063 were upregulated
and 526 were downregulated. Between the CK and CN
groups, 1 012 DEGs were identified, of which 737 were
upregulated and 275 were downregulated (Fig. 1).

To further characterize the DEGs, they were
functionally annotated using the GO and KEGG databases.
The GO functional enrichment analysis showed that
all DEGs could be classified into 45 functional groups,
including 20 groups in biological process, 13 in cellular
component, and 12 in molecular function (Fig. 2). Within
the ‘biological process’ category, ‘metabolic process’
and ‘cellular process’ were predominant. In the ‘cellular
components category’, ‘cell’, ‘cell part’, and ‘organelle’
were predominant and ‘binding’, and ‘catalytic activity’
were the most common subcategories in the ‘molecular
function’ category. In the CK vs. CS comparison, ‘cell’
(148) and ‘cell part’ (141) were the dominant ‘cellular
components’ subcategories. The ‘binding’ (189) and
‘catalytic activity’ (192) were the most predominant
‘molecular functions’ subcategories. The main ‘biological
processes’ subcategories were ‘metabolic process’ (249)
and ‘cellular process’ (209) (Fig. 24). In the CS vs. CN
comparison, DEGs were primarily involved in ‘cellular
process’, ‘metabolic process’ and ‘single organism
process’ in the ‘biological process’ category, and the DEGs
were enriched for GO terms that included ‘cell part’, ‘cell’,
‘binding’, and ‘catalytic activity’ (Fig. 2B). As concern the
CK and CN data, the GO-term distribution was similar to
the first two groups described above (Fig. 2C).

To understand the biological function of genes further,
we analyzed the DEGs using the KEGG database. In this
study, KEGG revealed that the pathways most highly
represented were ‘carbohydrate metabolism’, ‘biosynthesis
of other secondary metabolites’, followed by ‘amino acid
metabolism’, ‘lipid metabolism’ and ‘signal transduction’.
This suggests that these pathways might be important in
protecting melon plants against chilling stress (Fig. 3).
In the CK vs. CS comparison, ‘biosynthesis of secondary
metabolites’, ‘carbon metabolism’, ‘phenylpropanoid
biosynthesis’, and ‘plant hormone signal transduction’
were predominantly enriched (Fig. 34). In the CS vs. CN
comparison, most DEGs were enriched in three pathways:
‘metabolic pathways’, ‘biosynthesis of secondary
metabolites’, and  ‘phenylpropanoid  biosynthesis’
(Fig. 3B). Moreover, ‘metabolic pathways’, ‘biosynthesis
of secondary metabolites’, and ‘phenylpropanoid
biosynthesis’ were the main three pathways for DEGs in
the CK vs. CN comparison (Fig. 3C).

In this study, changes in the expression of transcripts
encoding enzymes related to sugar metabolism pathways
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were identified, such as B-glucosidase, UDP-glucuronate
4-epimerase, glucose-6-phosphate isomerase, triose
phosphate isomerase, and hexokinase (Fig. 4). Comparing
transcriptome data for control and chilling-stressed plants,
most of these genes were downregulated. The expression
of genes encoding fructose-bisphosphate aldolase, glucan
endo-1,3-B-glucosidase, and raffinose synthase were
upregulated in the CS vs. CN comparison. In the CK vs.
CN comparison, DEGs encoding fructose-bisphosphate
aldolase, glucan endo-1,3-fB-glucosidase and UDP-
glucuronate 4-epimerase were also upregulated.

In addition to an activation of genes involved in sugar
metabolism, an enrichment in transcripts associated
with hormone signalling was observed. These DEGs
included genes that encoded EREBP-like factors, WRKY
transcription factors, an auxin-responsive GH3 protein,
an auxin-responsive IAA protein, gibberellin 2-oxidase,
an abscisic acid receptor PYR/PYL family protein, a myb
proto-oncogene protein, and abscisic acid 8 -hydroxylase,
which were all upregulated in the CK vs. CS group
(Table 3 Suppl.).

Discussion

Sugars are important regulators of plant growth, not
only as carbon and energy source but also as signaling
molecules (Rosa et al. 2009, O'Hara et al. 2013, Ruan
2014). Furthermore, increasing numbers of studies have
demonstrated that sugars can regulate photosynthesis,
lipid metabolism, osmotic homeostasis, and gene
expression in response to various abiotic stresses (Keunen
et al. 2013, Sami et al. 2016). Genes associated with sugar
metabolism are regulated differently by cold acclimation
in tea plants, whereby CsBAM, CsINV5, CsRS2 are
upregulated and CsSWEET2, 3, 16, CsERD6.7 and CsINT2
are downregulated (Yue ef al. 2015). Therefore, varying
content of sugars and activities of related metabolic
pathways are crucially important to confer tolerance against
diverse abiotic stresses. In this study, sugar metabolism
was predominantly enriched upon chilling stress in melon
leaves (CK vs. CS), including 16 upregulated genes (Fig. 3).
Among these, four genes (encoding UDP-glucuronate
4-epimerase, P-glucosidase, glucuronosyltransferase,
and a-1,4-galacturonosyl transferase) were upregulated
in response to chilling stress. Glucose and fructose are
monosaccharides and can be phosphorylated by hexokinase
(HXK) and/or fructokinase (FRK) during glycolysis, to
provide substrates for numerous physiological pathways.
In this study, CmHXK was upregulated and 6-phosphate
fructokinase was downregulated by chilling stress.
Genes encoding UDP-glucuronate 4-epimerase, fructose-
bisphosphate aldolase, glucan endo-1,3-f-glucosidase
were upregulated by combined chilling stress and SNP
treatment (CS vs. CN). Uridine diphosphate glucose
dehydrogenase (UGD) catalyzes oxidation of UDP-
glucose to UDP-glucuronate, which is then converted to
UDP-galacturonic acid, UDP-xylose, UDP-arabinose, and
UDP-apiose (Seifert 2004). These sugars are precursors
for the synthesis of polymers such as hemicellulose and



pectin in plant cell walls. Therefore, we propose that
the induced metabolism of sugars in response to SNP
potentially provides an osmoprotectant function against
membrane injury, which thereby contributes to chilling
tolerance in melon seedlings.

Phytohormones, including ABA, SA, and auxin, are
involved in plant adaptation to stress (Gan 2010, Davies
2010). The data here indicate that many genes related to
hormone pathways, including those encoding abscisic
acid 8'-hydroxylase, a PYR/PYL family member, an
auxin responsive GH3 family member, and gibberellin
2-oxidase were upregulated during chilling stress (Table 3
Suppl.). Consistent with previous studies, GH3 and auxin-
related gene families have been reported to be involved
in responses to biotic and abiotic stresses in rice (Hagen
and Guilfoyle 2002). Many studies have demonstrated
that transcription factor networks regulate abiotic stress
responses (Chen et al. 2012). In this study, genes encoding
an EREBP-like factor, WRKY transcription factor 2 and a
myb proto-oncogene protein were significantly upregulated
after exposure to chilling stress. Taken together, our results
suggest that hormones might play crucial roles in plant
chilling stress responses.

Conclusions

In this study, we performed RNA-seq to comparatively
analyze the transcriptome of melon seedlings exposed
to chilling stress or chilling stress combined with NO
treatment. A large number of DEGs were identified in
response to NO treatment under chilling stress. The results
indicate that exogenous NO upregulates many genes
related to sugar metabolism, including UDP-glucuronate
4-epimerase, P-glucosidase, glucuronosyltransferase,
a-1,4-galacturonosyl transferase, as well as ERF/EREBP,
WRKY, GH3 and PYR/PYL genes, which are involved
in diverse signaling pathways. A significant positive
correlation between qPCR results and the RNA-seq data
for 10 genes confirmed the reliability of the transcriptome
data. Collectively, these results provide an important
contribution to the current understanding NO mediation of
the chilling tolerance of melon seedlings but the specific
regulatory mechanisms require further study.
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