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Introduction

Sunflower (Helianthus annuus L.) is one of the world 
most important annual crops grown for edible vegetable 
oil and for use as snack throughout the world together with 
soybeans, peanut and rapeseed due to its high oil content 
(40 - 52%), no cholesterol and high nonsaturated fatty 
acids content that ranges between 85 - 91% (Leon et al., 
2003).

In addition, sunflower is a temperate zone crop, which 
can perform well under a variety of climatic and soil 

conditions and combines high yield with great adaptation 
capacity (Canavar et al., 2010). 

Leaves are the largest proportion of the total canopy 
surface in most plants (Nakanwagi et al., 2018). Especially, 
leaf area is a very important component for determining 
growth rate and yield as it can be captured during different 
growing periods (Islam et al., 2017). The description 
of canopy architecture includes the morphological 
characteristics such as leaf area index (LAI), plant height, 
leaf inclination angles and leaf area density (Monsi and 
Saeki, 2005). Estimation of crop canopy growth parameters 
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Abstract

Image-derived phenotyping at individual plant level can provide more accurate and more comprehensive information 
than manual measuring for quantitative traits related to canopy growth in field environment. Aims of this study were 
to: (i) assess smartphone image-derived canopy parameter at early stage of sunflower, and (ii) to evaluate performance 
of predictive models for morphological and biomass traits related to canopy growth using smartphone image-derived 
parameter. Original top-view image datasets taken with a smartphone camera were processed, and necessary information 
was extracted with image analysis software developed using fuzzy c-means clustering algorithm. Canopy cover rate per 
plant (CCR) was not only the relative value but also image-derived phenotyping feature. CCR were significantly and 
positively correlated (r ≧ 0.90; **P < 0.01) with plant height, total leaf area per plant, plant dry mass, aboveground 
plant dry and leaf dry mass, respectively. Ground measured and predicted values from linear regression model for plant 
height, total leaf area per plant, plant dry mass, aboveground total dry mass, leaf dry mass per plant with CCR showed 
an accurate prediction with high coefficients of determination (R ) of more than 0.8063, respectively. The present study 
documented the robustness of predictive models using several metrics.
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including leaf cover area, aboveground biomass and 
canopy height, are essential for site-specific management 
practice (Ehlert et al., 2010). Measurements of crop growth 
parameters inculding LAI, canopy cover, and biomass are 
typically performed only a few times throughout growth 
period at irregular time intervals (Linker and Ioslovich, 
2017).

Visual assessment is a traditional method used to 
estimate canopy cover in the field environments, but it is 
limited by the costs, subjectivity and non-reproducibility of 
the produced estimates (Chianucci et al., 2018). In general, 
plant phenotypic traits were quantified using invasive,  
time-consuming, cost-inefficient, labor-intensive, and often 
destructive manual sampling methods (An et al., 2016). 
Recently, measurements for leaf growth were performed 
with the help of digital image-derived methods, which can 
quantify leaf growth at a high temporal resolution (Friedli 
and Walter, 2015). Image-derived plant phenotyping is 
intended to measure complex traits related to growth, 
development, yield component, grain yield and tolerance 
to different biotic and abiotic stress with a certain accuracy 
and precision at different scales of organization (Muraya 
et al., 2017; Chen et al., 2018; Zheng et al., 2019; Jong  
et al., 2025). Using digital imaging techniques could enable 
researchers to measure a variety of phenotypic parameters 
from the high-resolution images in field crops.

Canopy reflectance sensors were used to identify 
biomass and nitrogen status in sugarcane (Amaral et al., 
2015). In the previous studies, researchers used the complex 
and expensive apparatus such as canopy reflectance sensor 
and hyperspectral imaging line scan sensor equipped with 
a Specim V10 spectrometer and a Basler PiA190032 gm 
sensor. 

Because of the exorbitant price of instruments and 
equipment and limitation by the resolution, the time cycle, 
the geography, and the weather conditions, the existing 
image-based phenotyping systems are difficult to apply 
low-costly and simply to elevated plant number and large 
breeding populations in field environments (Sankaran et al., 
2015). Thus, data analytic methods were designed for 
specific study projects. 

Visible light imaging in the image-derived phenotyping 
is primarily employed to measure aspects of plant 
architecture including image-based projected leaf area, 
biomass, growth and development dynamics, seedling 
vigor, seed and root morphology and yield (Hu et al., 
2018; Jong et al., 2021).

Currently, with the tremendous advances in compact 
wireless technology, smartphones have been attracted 
significant attention in studies for agricultural traits (Qian 
et al., 2018; Barman et al., 2020; Tao et al., 2020; Jong et al., 
2025). Since the smartphone offers the high-resolution 
camera, it can be used as a convenient instrument for 
capturing image from field environments (Hufkens et al., 
2019; Mohan and Gupta, 2019; Tan et al., 2021). Moreover, 
it has some advantages over specialized monitoring systems 
involving ubiquity, low-cost, and ease of implementing 
updates (Petrie et al., 2019). To promote application of 
image-derived field phenotyping for agricultural traits,  
the inexpensive and efficient data acquisition and 

processing approaches and more accessible image analysis 
(IA) infrastructures will need to be developed (Shakoor  
et al., 2017).

To our knowledge, quantitative methods to monitor 
canopy and measure their growth in crops are rarely 
employed in the image-derived phenotyping studies. 
Since morphological and biomass traits are influenced by 
the interaction between genes and environmental factors,  
it is essential to comprehensively and accurately 
understand and evaluate these phenotypes using image-
derived phenotyping technique.

The following hypothesis was tested in this study:  
the predicted values through the models constructed using 
image-derived canopy parameter are similar to the ground 
measured values for the morphological and biomass traits 
during the early growing period of sunflower. The aims 
of this study were to: (i) assess smartphone image-derived 
canopy parameter at early growth stage of sunflower 
in field envrionment, and (ii) to evaluate performance  
of predictive models for morphological and biomass traits 
related to canopy growth using smartphone image-derived 
parameter.

Materials and methods

Plant material: This study used nine sunflower cultivars 
(DW167, DW776, EUDALIS, X3939, YZ3638, 
Bogchareze, Bujulluk, Pung 9, Unsan). Seeds of all  
the cultivars were provided by the Institute of Industrial 
Crops, the Academy of Agricultural Science of DPR 
Korea. 

Site description: Field experiment was conducted in 
the experimental station (latitude 39°01'17''N, longitude 
125°44'14''E, altitude 30 m a.s.l.) of the Faculty of Life 
Science of Kim Il Sung University in 2022.

Experimental design: A randomized complete block 
design with three replicates was used for laying out  
the field experiment. Each block was divided into nine 
plots, to which the cultivars were assigned randomly.  
The plot dimensions were 6 m in length and 3 m in width. 
Three seeds were sown manually in holes of 30 cm 
distance along the ridge in each plot on 2 July 2022, 
and then thinned to one plant per hole, one week after 
sowing. Complete fertilizer was applied at 180 kg (N) ha-1,  
120 kg (P2O5) ha-1 and 75 kg (K) ha-1. Pesticides were used 
to prevent pest damage.

Capturing the top-view canopy images with a smart
phone camera: We intended to use top-view images for 
image-derived phenotyping in the present study, since  
top-view images are more suitable for investigating 
canopy growth than side-view images in field environment 
(Fig. 1). Top-view images for each accession grown for 
15 days after sowing were captured using the smartphone 
camera (type 2418, Pyongyang, DPR Korea, 8 Mega 
Pixels) between 10:00 and 12:30 h on sunny day and 
under natural light without using external light source. 
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The height of smartphone camera was set at 30 cm using 
a selfie stick (Fig. 2). Images were saved in JPEG format 
(joint photographic experts group). Altogether, there were 
10 images for each plant.

Plant measurements: After capturing the top-view 
canopy images for each accessions (except the border 
plant at plots), plant height, width, and length of emerged 
leaves in plant were hand-held measured, respectively. 
Every leaf area was calculated as 0.65 [width (cm) × 
length (cm)], according to Dosio et al. (2003) and then  
the total leaf area per plant (cm2) was estimated as the sum 
of every leaf area. Plant dry mass was weighed after 48 h 
drying of samples in an oven at 70°C, till a constant mass 
was achieved, and after cutting roots from plant dried in 
the oven, aboveground total dry mass was determined.  
In addition, after cutting leaves from plant dried in  
the oven, leaf dry mass was also determined.

Image processing with IA software: In the present 
study, to improve quality of IA on sunflower, we newly 
developed and used IA software (Golden Field 3.0) using 
fuzzy c-means (FCM) clustering algorithm (Gong et al., 
2013). In general, R (red), G (green), and B (blue) image 
in IA has been widely used in machine vision applications 
due to low cost, high information volume, and simplicity 
of access (Singh et al., 2016). After RGB values of each 
pixel were obtained from the corresponding top view 

images, these values were transformed into HSV color 
system to obtain the average H (hue), S (saturation), and 
V (value, also known as brightness) values. H, S, V values 
were obtained from the RGB values, respectively (Vesali 
et al., 2015).

FCM algorithm using the color feature indices above 
was used to distinguish the green pixels from HSV 
components. Pixel gross of canopy cover was obtained 
from the HSB data. CCR was estimated from the top-
view digital image of individual plant and calculated as 
the rate of pixel gross of canopy cover and pixel gross of 
input image using IA software according to the following 
equation (Eq. 1). 

CCR (%) = (Canopy cover pixel gross/Input image pixel 
gross) × 100                                                                     (1)

Statistical analysis: Statistical analyses were performed 
using the IBM® SPSS® Statistics version 21. Means were 
compared based on the Fisher’s least significant difference 
(LSD) test at the 0.05 level. Correlation analysis with  
two-tailed test was used to determine whether a significant 
relationship between CCR and ground measured 
morphological and biomass traits existed at the *P < 0.05 
or **P < 0.01 probability levels. Linear regression models 
were used to quantify the relationship between ground 
measured morphological and biomass traits with CCR. 
These were constructed using the SPSS 21.0 (SPSS Inc., 
Chicago, IL, USA). 

Performance evaluation of the predictive models:  
To evaluate the performance of the predictive models, 
linear regression models were tested by comparing 
predicted outcomes with the ground measurements.  
The goodness of fit in linear regression model was 
expressed as the coefficient of determination (R2) (Eq. 2), 
which can be interpreted as an explained variation.  
The predicted outcomes were estimated from linear 
regression models with the high R², respectively. Finally, 
the predicted outcomes were compared with the ground 
measurements. The predictions for the morphological 
and biomass traits were quantified using several metrics 
according to Madec et al. (2019). Root mean squared 
error (RMSE) (Eq. 3), relative RMSE (rRMSE) (Eq. 4), 
Bias (BIAS) (Eq. 5), and mean absolute error (MAE) 
(Eq. 6) were calculated for assessing the robustness of  
the predictive models. In addition, accuracy of models with 
respect to the benchmark of the ability of prediction was 
also evaluated by percent bias (PBias) (Eq. 7) according to 
Mohan and Gupta (2019):
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Fig. 1. Canopy architecture in sunflower plant grown in field 
conditions during 15 days after sowing (online color). A - Side-
view canopy architecture, B - Top-view canopy architecture.  
The symetrical architecture of sunflower enables easy evalutation 
of plant traits by image acquisition using smartphone camera 
(online color).

Fig. 2. Acquiring top-view images in the field environment,  
the height of the smartphone camera was set at 30 cm using  
a selfie stick (online color).
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where n denotes the number of test images, tk and ck are 
the ground measured and estimated values for image k, 
respectively and t̄k is the mean ground measurements.

rRMSE provide a good indication of level of error 
of a prediction and it is more meaningful than RMSE 

(Wallach et al., 2013). If R2 value is higher and the rRMSE 
value, BIAS value and MAE value lower, the predictive 
model constructed from image-derived canopy parameter 
performs well.

The flowchart diagram for predicting morphological 
and biomass traits using CCR during early growing period 
of sunflower is detailed in Fig. 3.

Results

Assessment of smartphone image-derived canopy 
parameter: Canopy architecture in sunflower plants 
grown in field environment for 15 days after sowing was 
symmetrical as a consequence of the size, shape, angle and 

Fig. 3. Flowchart diagram of smartphone image-derived phenotyping. A - Image acquisition using smartphone camera in field 
environment, canopy parameter estimation using image analysis and the ground measurements, B - Pearson correlation analysis and 
predicting morphological and biomass traits, determination of siginificant relationships between CCR and morphological and biomass 
taits, C - Developing regression models and predicting morphological and biomass traits, performance evaluation of the models.  
To evaluate the performance of the predictive models, regression models were tested by comparing predicted values with the ground 
measurements using several metrics (online color).
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distribution of leaves arranged on different layers (Fig. 1). 
Therefore, the symmetrical architecture of sunflower 
enables easy evaluation of plant traits by image acquisition 
using smartphone camera (Fig. 2). 

When the original canopy image was processed with 
IA software, the green area of canopy cover was changed 
to the corresponding RGB image (Fig. 4). RGB image 
of canopy cover was the projection of canopy cover to  
two-dimensional plane. CCR was estimated from RGB 
image of the top-view canopy image using IA software, 
and is not only an image-derived phenotyping feature but 
also a canopy parameter (Fig. 4).

Original top-view image dataset and the corresponding 
top-view RGB image dataset processed with IA software 
are shown in Fig. 5. CCRs significantly varied among 
different accessions investigated (Table 1). Specially, CCR 
of Bujulluk was the largest (20.6%), while of DW776 was 
the lowest (3.3%). 

Correlation between ground measured morphological 
and biomass traits with CCR: Positive correlations among 
CCR and ground measured morphological and biomass 
traits were established with a high level of significance 
(Fig. 6). In detail, CCR were significantly and positively 

Fig. 4. IA software processing of canopy original images (online color).

Fig. 5. Original top-view image dataset of plants grown during 15 days after sowing in different accessions (left) and corresponding 
top-view RGB image dataset processed with IA software (right) (online color). A - DW167, B - DW776, C - EUDALIS, D - X3939, 
E - YZ3638, F - Bogchareze, G - Bujulluk, H - Pung 9, I - Unsan.
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correlated (r ≧ 0.90; **P < 0.01) with plant height, total 
leaf area per plant, plant dry mass, aboveground plant 
dry and leaf dry mass, respectively. Additionally, total 
leaf area per plant also were significantly and positively 
correlated with plant height (r = 0.79; *P < 0.05), plant 
dry mass (r = 0.97; **P < 0.01), aboveground plant 
dry (r = 0.97; **P < 0.01), and leaf dry mass (r = 0.99;  
**P < 0.01), respectively.

Linear regression models between morphological and 
biomass traits with CCR: Linear regression models 
between morphological and biomass traits with CCR were 
as follows: y1 = 0.4205x + 4.6151 for plant height, where  
y denotes plant height (cm), and x stands for CCR (%) 
in all the linear regression models; y = 2.574x + 20.07 
for total leaf area per plant, where y indicates total leaf 
area per plant (cm2); y = 0.0147x + 0.1363 for plant dry 
mass, where y is plant dry mass (g); y = 0.014x + 0.114 for 
aboveground plant dry mass, where y denotes aboveground 
plant dry mass (g);  y = 0.009x + 0.0837 for leaf dry mass, 
where y indicates leaf dry mass (g). These models showed  
the close relationships between CCR and plant height, 
total leaf area per plant, plant dry mass, aboveground plant 
dry mass, and leaf dry mass with high R2 of 0.852, 0.8526, 
0.8424, 0.8259, 0.8063, respectively (Fig. 1 Suppl.). 

Validation of predicted outcomes from linear regression 
models: Based on models constructed using CCR, we 
evaluated the performance of the predictive models using 
several metrics such as R2, RMSE, rRMSE, BIAS, MAE, 
and BPias (Fig. 2 Suppl.). All the models exhibited the 
significant correlations between the ground measured and 
predicted values with R2 values of more than 0.8063 for 
the target traits, and with very small BIAS, respectively. 
In detail, the measured and predicted values from linear 
regression models for plant height, total leaf area per plant, 
plant dry mass, aboveground plant dry mass and leaf dry 
mass showed the accurate prediction with high R2 of 0.852, 
0.8526, 0.8424, 0.8529, 0.8063, and with low RMSE, 
rRMSE, MAE, and very small BIAS of 0.0004, 0.0007, 
0.0004, 0.0003, 0.0002, respectively. Furthermore, very 
low BIAS values indicated that the predicted values from 

the linear regression models were within the acceptable 
limit.

Discussion

In the present study, we evaluated the performance of 
predictive models for morphological and biomass traits 
using smartphone image-derived CCR at early growth 
stage of sunflower. CCR estimated from the top-view 
canopy image of an individual plant was not only a canopy 
parameter but also an image-derived phenotyping feature. 
Results showed that CCR depended on accession in  
an identical growth conditions.

There are different methods of determining the leaf area 
(Padrón et al., 2016; dos Santos et al., 2016; Nakanwagi  
et al., 2018) and biomass (Wen et al., 2017), these can 
either be destructive or nondestructive. 

In the present study, CCR related to leaf area and 
biomass can be easily estimated from the top-view canopy 
image of an individual plant using IA software. It had  
the significant and positive correlations with not only total 
leaf area per plant related to leaf area development but also 
biomass traits (Fig. 6).

Because total leaf area per plant in sunflower was 
estimated as the sum of every leaf area [0.65 (width × 
length)] according to Dosio et al. (2003), it is time-
consuming and labor-intensive. However, estimation of 
CCR using IA software from smartphone images could 
be proposed as one of the low-cost and simple, repeatable 
assessment methods. These results that CCR was closely 
related to both leaf area development and biomass increase 
during early growing period supported that the rate of 
canopy coverage over the ground has a strong correlation 
with LAI (Banerjee et al., 2018).

Table 1. Image-derived canopy parameter, CCR, among different 
accessions. Values are means ± standard errors (n = 10). Different 

letters indicate significant differences between accessions  
(P < 0.05, Fisher’s LSD test), CCR - canopy cover rate per plant.

Accessions CCR (%)

DW167   7.9 ± 0.3a

DW776   3.3 ± 0.4b

EUDALIS 14.8 ± 0.3c

X3939   6.9 ± 0.3d

YZ3638 20.2 ± 0.6e

Bogchareze 11.7 ± 0.3f

Bujulluk 20.6 ± 0.5g

Pung 9 12.1 ± 0.4h

Unsan 20.2 ± 0.5e

Fig. 6. Heatmap dataset of correlation coefficients among CCR 
and the ground measured morphological and biomass traits.  
PH - plant height, LAP - leaf area per plant, PDM - plant dry 
mass, ADM - aboveground plant dry mass, LDM - leaf dry mass 
per plant, CCR - canopy cover rate per plant.
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CCR can be estimated by the non-destructive and non-
invasive method using IA software without any significant 
alteration of plant morphology. Significant levels for linear 
regression models between the morphological and biomass 
traits with CCR were shown with high R2, respectively 
(Fig. 1 Suppl.). Furthermore, linear regression models 
constructed using CCR produced the accurate prediction 
for the morphological and biomass traits (Fig. 2 Suppl.). 
Especially, the predicted values from models showed the 
accurate prediction with high R2 of more than 0.8529. 
The predicted values were in relatively good agreement 
with the ground measured ones for morphological and 
biomass traits, respectively. In other words, the prediction 
performance of all the models was relatively high. 

The predicted results from top-view images at 
early growth stage of sunflower supported the ones 
that constructed the predictive models to examine  
the quantitative relationship between the side-view  
image-based features and plant biomass accumulation 
in barley (Chen et al., 2018) and the models between  
the side-view image-derived parameter and quantitative 
traits related to plant architecture and biomass in rice (Jong 
et al., 2021; 2025). These findings suggested that using 
top-view image-derived field phenotyping can estimate 
the morphological and biomass traits exactly and simply 
during early growing period of plant, and reduce the field 
workload largely and increase also the work efficiency 
clearly.

The overall results from this study showed that 
CCR extracted from the top-view images can be used as  
the indirect and comprehensive descriptor for predicting 
morphological and biomass traits during early growing 
period in sunflower. In addition, our results provided  
the support for the hypothesis that the predicted values 
from the models constructed using image-derived canopy 
parameter are similar to the ground measured values for 
the morphological and biomass traits during early growing 
period of sunflower. 

Its application would be beneficial in the process of 
optimizing crop management, comparing the performance 
of different cultivars, and detecting potential adaptation 
to biotic or abiotic stress (disease, insects, drought, and 
salinity) in field environments. This methodology using 
smartphone camera is adequate to the early growing 
period of short and high crops, but it is inadequate to  
the maturing period of high crops such as maize, 
sugarcane and sorghum, because capturing the top-view 
canopy image for high plants is difficult with smartphone 
camera. In the future study, we intend to evaluate yield 
components from CCR in accessions or lines with  
high-yielding potential in crops. 

References

Amaral, L.R., Molin, J.P., Portz, G., Finazzi, F.B. & Cortinove, L. 
(2015) Comparison of crop canopy reflectance sensors used 
to identify sugarcane biomass and nitrogen status. Precision 
Agriculture, 16, 15-28.

An, N., Palmer, C.M., Baker, R.L. et al. (2016) Plant high-
throughput phenotyping using photogrammetry and imaging 

techniques to measure leaf length and rosette area. Computers 
and Electronics in Agriculture, 127, 376-394.

Banerjee, K., Krishnan, P. & Mridha, N. (2018) Application of 
thermal imaging of wheat crop canopy to estimate leaf area 
index under different moisture stress conditions. Biosystems 
Engineering, 166, 13-27, 2018.

Barman, U., Choudhury, R.D., Sahu, D. & Barman, G.G. (2020) 
Comparison of convolution neural networks for smartphone 
image based real time classification of citrus leaf disease. 
Computers and Electronics in Agriculture, 177, 105661.

Canavar, Ö., Ellmer, F. & Chmielewski, F.M. (2010) Investigation 
of yield and yield components of sunflower (Helianthus 
annuus L.) cultivars in the ecological conditions of Berlin 
(Germany). Helia, 33, 117-130.

Chen, D.J., Shi, R.L., Pape, J.-M. et al. (2018) Predicting plant 
biomass accumulation from image-derived parameters. 
GigaScience, 7, giy001.

Chianucci, F., Lucibelli, A. & Dell'Abate, M.T. (2018) Estimation 
of ground canopy cover in agricultural crops using downward-
looking photography. Biosystems Engineering, 169, 209-216.

dos Santos, J.C.C., Costa, R.N., Silva, D.M.R. et al. (2016) 
Use of allometric models to estimate leaf area in Hymenaea 
courbaril L. Theoretical and Experimental Plant Physiology, 
28, 357-369.

Dosio, G.A.A., Rey, H., Lecoeur, J. et al. (2003) A whole-plant 
analysis of the dynamics of expansion of individual leaves of 
two sunflower hybrids. Journal of Experimental Botany, 54, 
2541-2552.

Ehlert, D., Heisig, M. & Adamek, R. (2010) Suitability of  
a laser rangefinder to characterize winter wheat. Precision 
Agriculture, 11, 650-663.

Friedli, M., Walter, A. (2015) Diel growth patterns of young 
soybean (Glycine max) leaflets are synchronous throughout 
different positions on a plant. Plant, Cell & Environment, 38, 
514-524.

Gong, M., Liang, Y., Shi, J., Ma, W. & Ma, J. (2013) Fuzzy 
C-means clustering with local information and kernel metric 
for image segmentation. IEEE Transactions on Image 
Processing, 22, 573-584.

Hu, P.C., Chapman, S.C., Wang, X.M. et al. (2018) Estimation 
of plant height using a high throughput phenotyping platform 
based on unmanned aerial vehicle and self-calibration: 
Example for sorghum breeding. European Journal of 
Agronomy, 95, 24-32.

Hufkens, K., Melaas, E.K., Mann, M.L. et al. (2019) Monitoring 
crop phenology using a smartphone based near-surface remote 
sensing approach. Agricultural and Forest Meteorology, 265, 
327-337.

Islam, M.A., Ferdous, G., Akter, A., Hossain, M.M. & Nandwani, D. 
(2017) Effect of organic, inorganic fertilizers and plant spacing 
on the growth and yield of cabbage. Agriculture, 7, 31.

Jong, K.-O., Han, K.-M., Kim, K.-P., Ho, T., Jang, Y.-J. & Ri, K.-S. 
(2025) Image based green area analysis at tillering stage can 
predict yield potential in rice. Plant Physiology Reports, 30, 
664-672.

Jong, K.-O., Han, K.-M., Kwak, S.-I., Jang, Y.-J., Ho, C. &  
Kim, K.-P. (2021) Simple estimation of green area rate 
using image analysis and quantitative traits related to plant 
architecture and biomass in rice seedling. Theoretical and 
Experimental Plant Physiology, 33, 225-234.

Leon, A.J., Andrade, F.H. & Lee, M. (2003) Genetic analysis of 
seed-oil concentrations across generations and environments 
in sunflower. Crop Science, 43, 135-140.

Linker, R. & Ioslovich, I. (2017) Assimilation of canopy cover 
and biomass measurements in the crop model AquaCrop. 
Biosystems Engineering, 162, 57-66.

https://doi.org/10.1007/s11119-014-9377-2
https://doi.org/10.1007/s11119-014-9377-2
https://doi.org/10.1007/s11119-014-9377-2
https://doi.org/10.1007/s11119-014-9377-2
https://doi.org/10.1016/j.compag.2016.04.002
https://doi.org/10.1016/j.compag.2016.04.002
https://doi.org/10.1016/j.compag.2016.04.002
https://doi.org/10.1016/j.compag.2016.04.002
https://doi.org/10.1016/j.biosystemseng.2017.10.012
https://doi.org/10.1016/j.biosystemseng.2017.10.012
https://doi.org/10.1016/j.biosystemseng.2017.10.012
https://doi.org/10.1016/j.biosystemseng.2017.10.012
https://doi.org/10.1016/j.compag.2020.105661
https://doi.org/10.1016/j.compag.2020.105661
https://doi.org/10.1016/j.compag.2020.105661
https://doi.org/10.1016/j.compag.2020.105661
https://doi.org/10.2298/hel1053117c
https://doi.org/10.2298/hel1053117c
https://doi.org/10.2298/hel1053117c
https://doi.org/10.2298/hel1053117c
https://doi.org/10.1093/gigascience/giy001
https://doi.org/10.1093/gigascience/giy001
https://doi.org/10.1093/gigascience/giy001
https://doi.org/10.1016/j.biosystemseng.2018.02.012
https://doi.org/10.1016/j.biosystemseng.2018.02.012
https://doi.org/10.1016/j.biosystemseng.2018.02.012
https://doi.org/10.1007/s40626-016-0072-8
https://doi.org/10.1007/s40626-016-0072-8
https://doi.org/10.1007/s40626-016-0072-8
https://doi.org/10.1007/s40626-016-0072-8
https://doi.org/10.1093/jxb/erg279
https://doi.org/10.1093/jxb/erg279
https://doi.org/10.1093/jxb/erg279
https://doi.org/10.1093/jxb/erg279
https://doi.org/10.1007/s11119-010-9191-4
https://doi.org/10.1007/s11119-010-9191-4
https://doi.org/10.1007/s11119-010-9191-4
https://doi.org/10.1111/pce.12407
https://doi.org/10.1111/pce.12407
https://doi.org/10.1111/pce.12407
https://doi.org/10.1111/pce.12407
https://doi.org/10.1109/TIP.2012.2219547
https://doi.org/10.1109/TIP.2012.2219547
https://doi.org/10.1109/TIP.2012.2219547
https://doi.org/10.1109/TIP.2012.2219547
https://doi.org/10.1016/j.eja.2018.02.004
https://doi.org/10.1016/j.eja.2018.02.004
https://doi.org/10.1016/j.eja.2018.02.004
https://doi.org/10.1016/j.eja.2018.02.004
https://doi.org/10.1016/j.eja.2018.02.004
https://doi.org/10.1016/j.agrformet.2018.11.002
https://doi.org/10.1016/j.agrformet.2018.11.002
https://doi.org/10.1016/j.agrformet.2018.11.002
https://doi.org/10.1016/j.agrformet.2018.11.002
https://doi.org/10.3390/agriculture7040031
https://doi.org/10.3390/agriculture7040031
https://doi.org/10.3390/agriculture7040031
https://doi.org/10.1007/s40502-025-00891-y
https://doi.org/10.1007/s40502-025-00891-y
https://doi.org/10.1007/s40502-025-00891-y
https://doi.org/10.1007/s40502-025-00891-y
https://doi.org/10.1007/s40626-021-00207-z
https://doi.org/10.1007/s40626-021-00207-z
https://doi.org/10.1007/s40626-021-00207-z
https://doi.org/10.1007/s40626-021-00207-z
https://doi.org/10.1007/s40626-021-00207-z
https://doi.org/10.2135/cropsci2003.1350
https://doi.org/10.2135/cropsci2003.1350
https://doi.org/10.2135/cropsci2003.1350
https://doi.org/10.1016/j.biosystemseng.2017.08.003
https://doi.org/10.1016/j.biosystemseng.2017.08.003
https://doi.org/10.1016/j.biosystemseng.2017.08.003


105

 IMAGE-DERIVED CANOPY PHENOTYPING 

Madec, S., Jin, X.L., Lu, H. et al. (2019) Ear density estimation 
from high resolution RGB imagery using deep learning 
technique. Agricultural and Forest Meteorology, 264, 225-
234.

Mohan, P.J. & Gupta, S.D. (2019) Intelligent image analysis 
for retrieval of leaf chlorophyll content of rice from digital 
images of smartphone under natural light. Photosynthetica, 
57, 388-398. 

Monsi, M. & Saeki, T. (2005) On the factor light in plant 
communities and its importance for matter production. Annals 
of Botany, 95, 549-567.

Muraya, M.M., Chu, J., Zhao, Y. et al. (2017) Genetic variation 
of growth dynamics in maize (Zea mays L.) revealed through 
automated non-invasive phenotyping. The Plant Journal, 89, 
366-380.

Nakanwagi, M.J., Sseremba, G., Kabod, N.P., Masanza, M. & 
Kizito, E.B. (2018) Accuracy of using leaf blade length and 
leaf blade width measurements to calculate the leaf area of 
Solanum aethiopicum Shum group. Heliyon, 4, e01093.

Padrón, R.A.R., Lopes, S.J., Swarowsky, A., Cerquera, R.R., 
Nogueira, C.U. & Maffei, M. (2016) Non-destructive models 
to estimate leaf area on bell pepper crop. Ciência Rural, 46, 
1938-1944.

Petrie, P.R., Wang, Y.N., Liu, S., Lam, S., Whitty, M.A. &  
Skewes, M.A. (2019) The accuracy and utility of a low cost 
thermal camera and smartphone-based system to assess 
grapevine water status. Biosystems Engineering, 179, 126-
139.

Qian, J.P., Xing, B., Wu, X.M., Chen, M.X. & Wang, Y. (2018) 
A smartphone-based apple yield estimation application using 
imaging features and the ANN method in mature period. 
Scientia Agricola, 75, 273-280.

Sankaran, S., Khot, L.R., Espinoza, C.Z. et al. (2015) Low-

altitude, high-resolution aerial imaging systems for row 
and field crop phenotyping: a review. European Journal  
of Agronomy, 70, 112-123, 2015.

Shakoor, N., Lee, S. & Mockler, T.C. (2017) High throughput 
phenotyping to accelerate crop breeding and monitoring of 
diseases in the field. Current Opinion in Plant Biology, 38, 
184-192.

Singh, A., Ganapathysubramanian, B., Singh, A.K. & Sarkar, S. 
(2016) Machine learning for high-throughput stress 
phenotyping in plants. Trends in Plant Science, 21, 110-124.

Tan, W.H., Ibrahim, H. & Chan, D.J.C. (2021) Estimation 
of mass, chlorophylls, and anthocyanins of Spirodela 
polyrhiza with smartphone acquired images. Computers and 
Electronics in Agriculture, 190, 106449.

Tao, M., Ma, X., Huang, X.N. et al. (2020) Smartphone-based 
detection of leaf color levels in rice plants. Computers and 
Electronics in Agriculture, 173, 105431.

Vesali, F., Omid, M., Kaleita, A. & Mobli, H. (2015) Development 
of an android app to estimate chlorophyll content of corn 
leaves based on contact imaging. Computers and Electronics 
in Agriculture, 116, 211-220.

Wallach, D., Makowski, D., Jones, J.W. & Brun, F. (2013) 
Working with Dynamic Crop Models: Methods, Tools 
and Examples for Agriculture and Environment. London: 
Academic Press, pp. 597.

Wen, Z.F., Ma, M.H., Zhang, C., Yi, X.M., Chen, J.L. & Wu, S.J. 
(2017) Estimating seasonal aboveground biomass of a riparian 
pioneer plant community: An exploratory analysis by canopy 
structural data. Ecological Indicators, 83, 441-450.

Zheng, H.B., Cheng, T., Zhou, M. et al. (2019) Improved 
estimation of rice aboveground biomass combining textural 
and spectral analysis of UAV imagery. Precision Agriculture, 
20, 611-629.

© The authors. This is an open access article distributed under the terms of the Creative Commons BY-NC-ND Licence.

https://doi.org/10.1016/j.agrformet.2018.10.013
https://doi.org/10.1016/j.agrformet.2018.10.013
https://doi.org/10.1016/j.agrformet.2018.10.013
https://doi.org/10.1016/j.agrformet.2018.10.013
https://doi.org/10.32615/ps.2019.046
https://doi.org/10.32615/ps.2019.046
https://doi.org/10.32615/ps.2019.046
https://doi.org/10.32615/ps.2019.046
https://doi.org/10.1093/aob/mci052
https://doi.org/10.1093/aob/mci052
https://doi.org/10.1093/aob/mci052
https://doi.org/10.1111/tpj.13390
https://doi.org/10.1111/tpj.13390
https://doi.org/10.1111/tpj.13390
https://doi.org/10.1111/tpj.13390
https://doi.org/10.1016/j.heliyon.2018.e01093
https://doi.org/10.1016/j.heliyon.2018.e01093
https://doi.org/10.1016/j.heliyon.2018.e01093
https://doi.org/10.1016/j.heliyon.2018.e01093
https://doi.org/10.1590/0103-8478cr20151324
https://doi.org/10.1590/0103-8478cr20151324
https://doi.org/10.1590/0103-8478cr20151324
https://doi.org/10.1590/0103-8478cr20151324
https://doi.org/10.1016/j.biosystemseng.2019.01.002
https://doi.org/10.1016/j.biosystemseng.2019.01.002
https://doi.org/10.1016/j.biosystemseng.2019.01.002
https://doi.org/10.1016/j.biosystemseng.2019.01.002
https://doi.org/10.1016/j.biosystemseng.2019.01.002
https://doi.org/10.1590/1678-992x-2016-0152
https://doi.org/10.1590/1678-992x-2016-0152
https://doi.org/10.1590/1678-992x-2016-0152
https://doi.org/10.1590/1678-992x-2016-0152
https://doi.org/10.1016/j.eja.2015.07.004
https://doi.org/10.1016/j.eja.2015.07.004
https://doi.org/10.1016/j.eja.2015.07.004
https://doi.org/10.1016/j.eja.2015.07.004
https://doi.org/10.1016/j.pbi.2017.05.006
https://doi.org/10.1016/j.pbi.2017.05.006
https://doi.org/10.1016/j.pbi.2017.05.006
https://doi.org/10.1016/j.pbi.2017.05.006
https://doi.org/10.1016/j.tplants.2015.10.015
https://doi.org/10.1016/j.tplants.2015.10.015
https://doi.org/10.1016/j.tplants.2015.10.015
https://doi.org/10.1016/j.compag.2021.106449
https://doi.org/10.1016/j.compag.2021.106449
https://doi.org/10.1016/j.compag.2021.106449
https://doi.org/10.1016/j.compag.2021.106449
https://doi.org/10.1016/j.compag.2020.105431
https://doi.org/10.1016/j.compag.2020.105431
https://doi.org/10.1016/j.compag.2020.105431
https://doi.org/10.1016/j.compag.2015.06.012
https://doi.org/10.1016/j.compag.2015.06.012
https://doi.org/10.1016/j.compag.2015.06.012
https://doi.org/10.1016/j.compag.2015.06.012
https://doi.org/10.1016/C2016-0-01552-8
https://doi.org/10.1016/C2016-0-01552-8
https://doi.org/10.1016/C2016-0-01552-8
https://doi.org/10.1016/C2016-0-01552-8
https://doi.org/10.1016/j.ecolind.2017.07.048
https://doi.org/10.1016/j.ecolind.2017.07.048
https://doi.org/10.1016/j.ecolind.2017.07.048
https://doi.org/10.1016/j.ecolind.2017.07.048
https://doi.org/10.1007/s11119-018-9600-7
https://doi.org/10.1007/s11119-018-9600-7
https://doi.org/10.1007/s11119-018-9600-7
https://doi.org/10.1007/s11119-018-9600-7

