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Abstract

Image-derived phenotyping at individual plant level can provide more accurate and more comprehensive information
than manual measuring for quantitative traits related to canopy growth in field environment. Aims of this study were
to: (1) assess smartphone image-derived canopy parameter at early stage of sunflower, and (ii) to evaluate performance
of predictive models for morphological and biomass traits related to canopy growth using smartphone image-derived
parameter. Original top-view image datasets taken with a smartphone camera were processed, and necessary information
was extracted with image analysis software developed using fuzzy c-means clustering algorithm. Canopy cover rate per
plant (CCR) was not only the relative value but also image-derived phenotyping feature. CCR were significantly and
positively correlated (» 2 0.90; **P < 0.01) with plant height, total leaf area per plant, plant dry mass, aboveground
plant dry and leaf dry mass, respectively. Ground measured and predicted values from linear regression model for plant
height, total leaf area per plant, plant dry mass, aboveground total dry mass, leaf dry mass per plant with CCR showed
an accurate prediction with high coefficients of determination (R ) of more than 0.8063, respectively. The present study
documented the robustness of predictive models using several metrics.
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Introduction

Sunflower (Helianthus annuus L.) is one of the world
most important annual crops grown for edible vegetable
oil and for use as snack throughout the world together with
soybeans, peanut and rapeseed due to its high oil content
(40 - 52%), no cholesterol and high nonsaturated fatty
acids content that ranges between 85 - 91% (Leon et al.,
2003).

In addition, sunflower is a temperate zone crop, which
can perform well under a variety of climatic and soil

conditions and combines high yield with great adaptation
capacity (Canavar et al., 2010).

Leaves are the largest proportion of the total canopy
surface in most plants (Nakanwagi et al., 2018). Especially,
leaf area is a very important component for determining
growth rate and yield as it can be captured during different
growing periods (Islam et al., 2017). The description
of canopy architecture includes the morphological
characteristics such as leaf area index (LAI), plant height,
leaf inclination angles and leaf area density (Monsi and
Saeki, 2005). Estimation of crop canopy growth parameters
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including leaf cover area, aboveground biomass and
canopy height, are essential for site-specific management
practice (Ehlert et al., 2010). Measurements of crop growth
parameters inculding LAI, canopy cover, and biomass are
typically performed only a few times throughout growth
period at irregular time intervals (Linker and lIoslovich,
2017).

Visual assessment is a traditional method used to
estimate canopy cover in the field environments, but it is
limited by the costs, subjectivity and non-reproducibility of
the produced estimates (Chianucci et al., 2018). In general,
plant phenotypic traits were quantified using invasive,
time-consuming, cost-inefficient, labor-intensive, and often
destructive manual sampling methods (An et al., 2016).
Recently, measurements for leaf growth were performed
with the help of digital image-derived methods, which can
quantify leaf growth at a high temporal resolution (Friedli
and Walter, 2015). Image-derived plant phenotyping is
intended to measure complex traits related to growth,
development, yield component, grain yield and tolerance
to different biotic and abiotic stress with a certain accuracy
and precision at different scales of organization (Muraya
et al., 2017; Chen et al., 2018; Zheng et al., 2019; Jong
etal., 2025). Using digital imaging techniques could enable
researchers to measure a variety of phenotypic parameters
from the high-resolution images in field crops.

Canopy reflectance sensors were used to identify
biomass and nitrogen status in sugarcane (Amaral et al.,
2015). Inthe previous studies, researchers used the complex
and expensive apparatus such as canopy reflectance sensor
and hyperspectral imaging line scan sensor equipped with
a Specim V10 spectrometer and a Basler PiA190032 gm
Sensor.

Because of the exorbitant price of instruments and
equipment and limitation by the resolution, the time cycle,
the geography, and the weather conditions, the existing
image-based phenotyping systems are difficult to apply
low-costly and simply to elevated plant number and large
breeding populations in field environments (Sankaran et al.,
2015). Thus, data analytic methods were designed for
specific study projects.

Visible light imaging in the image-derived phenotyping
is primarily employed to measure aspects of plant
architecture including image-based projected leaf area,
biomass, growth and development dynamics, seedling
vigor, seed and root morphology and yield (Hu et al.,
2018; Jong et al., 2021).

Currently, with the tremendous advances in compact
wireless technology, smartphones have been attracted
significant attention in studies for agricultural traits (Qian
etal.,2018; Barman etal., 2020; Tao et al., 2020; Jong et al.,
2025). Since the smartphone offers the high-resolution
camera, it can be used as a convenient instrument for
capturing image from field environments (Hufkens et al.,
2019; Mohan and Gupta, 2019; Tan et al., 2021). Moreover,
ithas some advantages over specialized monitoring systems
involving ubiquity, low-cost, and ease of implementing
updates (Petrie et al., 2019). To promote application of
image-derived field phenotyping for agricultural traits,
the inexpensive and efficient data acquisition and
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processing approaches and more accessible image analysis
(IA) infrastructures will need to be developed (Shakoor
etal., 2017).

To our knowledge, quantitative methods to monitor
canopy and measure their growth in crops are rarely
employed in the image-derived phenotyping studies.
Since morphological and biomass traits are influenced by
the interaction between genes and environmental factors,
it is essential to comprehensively and accurately
understand and evaluate these phenotypes using image-
derived phenotyping technique.

The following hypothesis was tested in this study:
the predicted values through the models constructed using
image-derived canopy parameter are similar to the ground
measured values for the morphological and biomass traits
during the early growing period of sunflower. The aims
of this study were to: (i) assess smartphone image-derived
canopy parameter at early growth stage of sunflower
in field envrionment, and (ii) to evaluate performance
of predictive models for morphological and biomass traits
related to canopy growth using smartphone image-derived
parameter.

Materials and methods

Plant material: This study used nine sunflower cultivars
(DW167, DW776, EUDALIS, X3939, YZ3638,
Bogchareze, Bujulluk, Pung 9, Unsan). Seeds of all
the cultivars were provided by the Institute of Industrial
Crops, the Academy of Agricultural Science of DPR
Korea.

Site description: Field experiment was conducted in
the experimental station (latitude 39°01'17"N, longitude
125°44'14"E, altitude 30 m a.s.l.) of the Faculty of Life
Science of Kim Il Sung University in 2022.

Experimental design: A randomized complete block
design with three replicates was used for laying out
the field experiment. Each block was divided into nine
plots, to which the cultivars were assigned randomly.
The plot dimensions were 6 m in length and 3 m in width.
Three seeds were sown manually in holes of 30 cm
distance along the ridge in each plot on 2 July 2022,
and then thinned to one plant per hole, one week after
sowing. Complete fertilizer was applied at 180 kg (N) ha'!,
120 kg (P,0s) ha! and 75 kg (K) ha'!. Pesticides were used
to prevent pest damage.

Capturing the top-view canopy images with a smart-
phone camera: We intended to use top-view images for
image-derived phenotyping in the present study, since
top-view images are more suitable for investigating
canopy growth than side-view images in field environment
(Fig. 1). Top-view images for each accession grown for
15 days after sowing were captured using the smartphone
camera (type 2418, Pyongyang, DPR Korea, 8 Mega
Pixels) between 10:00 and 12:30 h on sunny day and
under natural light without using external light source.
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Fig. 1. Canopy architecture in sunflower plant grown in field
conditions during 15 days after sowing (online color). 4 - Side-
view canopy architecture, B - Top-view canopy architecture.
The symetrical architecture of sunflower enables easy evalutation
of plant traits by image acquisition using smartphone camera
(online color).

Fig. 2. Acquiring top-view images in the field environment,
the height of the smartphone camera was set at 30 cm using
a selfie stick (online color).

The height of smartphone camera was set at 30 cm using
a selfie stick (Fig. 2). Images were saved in JPEG format
(joint photographic experts group). Altogether, there were
10 images for each plant.

Plant measurements: After capturing the top-view
canopy images for each accessions (except the border
plant at plots), plant height, width, and length of emerged
leaves in plant were hand-held measured, respectively.
Every leaf area was calculated as 0.65 [width (cm) X
length (cm)], according to Dosio et al. (2003) and then
the total leaf area per plant (cm?) was estimated as the sum
of every leaf area. Plant dry mass was weighed after 48 h
drying of samples in an oven at 70°C, till a constant mass
was achieved, and after cutting roots from plant dried in
the oven, aboveground total dry mass was determined.
In addition, after cutting leaves from plant dried in
the oven, leaf dry mass was also determined.

Image processing with IA software: In the present
study, to improve quality of IA on sunflower, we newly
developed and used IA software (Golden Field 3.0) using
fuzzy c-means (FCM) clustering algorithm (Gong et al.,
2013). In general, R (red), G (green), and B (blue) image
in IA has been widely used in machine vision applications
due to low cost, high information volume, and simplicity
of access (Singh et al., 2016). After RGB values of each
pixel were obtained from the corresponding top view
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images, these values were transformed into HSV color
system to obtain the average H (hue), S (saturation), and
V (value, also known as brightness) values. H, S, V values
were obtained from the RGB values, respectively (Vesali
etal., 2015).

FCM algorithm using the color feature indices above
was used to distinguish the green pixels from HSV
components. Pixel gross of canopy cover was obtained
from the HSB data. CCR was estimated from the top-
view digital image of individual plant and calculated as
the rate of pixel gross of canopy cover and pixel gross of
input image using IA software according to the following
equation (Eq. 1).

CCR (%) = (Canopy cover pixel gross/Input image pixel
gross) x 100 (1)

Statistical analysis: Statistical analyses were performed
using the /BM®™ SPSS® Statistics version 21. Means were
compared based on the Fisher’s least significant difference
(LSD) test at the 0.05 level. Correlation analysis with
two-tailed test was used to determine whether a significant
relationship between CCR and ground measured
morphological and biomass traits existed at the *P < 0.05
or ¥**P < (.01 probability levels. Linear regression models
were used to quantify the relationship between ground
measured morphological and biomass traits with CCR.
These were constructed using the SPSS 21.0 (SPSS Inc.,
Chicago, IL, USA).

Performance evaluation of the predictive models:
To evaluate the performance of the predictive models,
linear regression models were tested by comparing
predicted outcomes with the ground measurements.
The goodness of fit in linear regression model was
expressed as the coefficient of determination (R?) (Eq. 2),
which can be interpreted as an explained variation.
The predicted outcomes were estimated from linear
regression models with the high R?, respectively. Finally,
the predicted outcomes were compared with the ground
measurements. The predictions for the morphological
and biomass traits were quantified using several metrics
according to Madec et al. (2019). Root mean squared
error (RMSE) (Eq. 3), relative RMSE (tRMSE) (Eq. 4),
Bias (BIAS) (Eq. 5), and mean absolute error (MAE)
(Eq. 6) were calculated for assessing the robustness of
the predictive models. In addition, accuracy of models with
respect to the benchmark of the ability of prediction was
also evaluated by percent bias (PBias) (Eq. 7) according to
Mohan and Gupta (2019):
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where n denotes the number of test images, t« and ci are
the ground measured and estimated values for image k,
respectively and f is the mean ground measurements.
rRMSE provide a good indication of level of error
of a prediction and it is more meaningful than RMSE
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(Wallach et al., 2013). If R? value is higher and the rRMSE
value, BIAS value and MAE value lower, the predictive
model constructed from image-derived canopy parameter
performs well.

The flowchart diagram for predicting morphological
and biomass traits using CCR during early growing period
of sunflower is detailed in Fig. 3.

Results

Assessment of smartphone image-derived canopy
parameter: Canopy architecture in sunflower plants
grown in field environment for 15 days after sowing was
symmetrical as a consequence of the size, shape, angle and

Fig. 3. Flowchart diagram of smartphone image-derived phenotyping. 4 - Image acquisition using smartphone camera in field
environment, canopy parameter estimation using image analysis and the ground measurements, B - Pearson correlation analysis and
predicting morphological and biomass traits, determination of siginificant relationships between CCR and morphological and biomass
taits, C - Developing regression models and predicting morphological and biomass traits, performance evaluation of the models.
To evaluate the performance of the predictive models, regression models were tested by comparing predicted values with the ground

measurements using several metrics (online color).
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distribution of leaves arranged on different layers (Fig. 1).
Therefore, the symmetrical architecture of sunflower
enables easy evaluation of plant traits by image acquisition
using smartphone camera (Fig. 2).

When the original canopy image was processed with
IA software, the green area of canopy cover was changed
to the corresponding RGB image (Fig. 4). RGB image
of canopy cover was the projection of canopy cover to
two-dimensional plane. CCR was estimated from RGB
image of the top-view canopy image using IA software,
and is not only an image-derived phenotyping feature but
also a canopy parameter (Fig. 4).

Original top-view image dataset and the corresponding
top-view RGB image dataset processed with IA software
are shown in Fig. 5. CCRs significantly varied among
different accessions investigated (Table 1). Specially, CCR
of Bujulluk was the largest (20.6%), while of DW776 was
the lowest (3.3%).

Correlation between ground measured morphological
and biomass traits with CCR: Positive correlations among
CCR and ground measured morphological and biomass
traits were established with a high level of significance
(Fig. 6). In detail, CCR were significantly and positively

Fig. 4. 1A software processing of canopy original images (online color).

Fig. 5. Original top-view image dataset of plants grown during 15 days after sowing in different accessions (/eff) and corresponding
top-view RGB image dataset processed with IA software (right) (online color). 4 - DW167, B - DW776, C - EUDALIS, D - X3939,

E -YZ3638, F - Bogchareze, G - Bujulluk, H - Pung 9, I - Unsan.
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Table 1. Image-derived canopy parameter, CCR, among different
accessions. Values are means =+ standard errors (n = 10). Different
letters indicate significant differences between accessions
(P <0.05, Fisher’s LSD test), CCR - canopy cover rate per plant.

Accessions CCR (%)

DW167 7.9+0.3?
DW776 33+£04°
EUDALIS 14.8 £0.3¢
X3939 6.9+0.3¢
YZ3638 20.2 £0.6°
Bogchareze 11.7+0.3f
Bujulluk 20.6 £ 0.5¢8
Pung 9 12.1£0.4h
Unsan 20.2 £ 0.5°

correlated (r = 0.90; **P < 0.01) with plant height, total
leaf area per plant, plant dry mass, aboveground plant
dry and leaf dry mass, respectively. Additionally, total
leaf area per plant also were significantly and positively
correlated with plant height (» = 0.79; *P < 0.05), plant
dry mass (r = 0.97; **P < 0.01), aboveground plant
dry (r = 0.97; **P < 0.01), and leaf dry mass (» = 0.99;
**P <0.01), respectively.

Linear regression models between morphological and
biomass traits with CCR: Linear regression models
between morphological and biomass traits with CCR were
as follows: y; = 0.4205x + 4.6151 for plant height, where
y denotes plant height (cm), and x stands for CCR (%)
in all the linear regression models; y = 2.574x + 20.07
for total leaf area per plant, where y indicates total leaf
area per plant (cm?); y = 0.0147x + 0.1363 for plant dry
mass, where y is plant dry mass (g); y=0.014x + 0.114 for
aboveground plant dry mass, where y denotes aboveground
plant dry mass (g); y =0.009x + 0.0837 for leaf dry mass,
where y indicates leaf dry mass (g). These models showed
the close relationships between CCR and plant height,
total leaf area per plant, plant dry mass, aboveground plant
dry mass, and leaf dry mass with high R? of 0.852, 0.8526,
0.8424, 0.8259, 0.8063, respectively (Fig. 1 Suppl.).

Validation of predicted outcomes from linear regression
models: Based on models constructed using CCR, we
evaluated the performance of the predictive models using
several metrics such as R?, RMSE, rRMSE, BIAS, MAE,
and BPias (Fig. 2 Suppl.). All the models exhibited the
significant correlations between the ground measured and
predicted values with R? values of more than 0.8063 for
the target traits, and with very small BIAS, respectively.
In detail, the measured and predicted values from linear
regression models for plant height, total leaf area per plant,
plant dry mass, aboveground plant dry mass and leaf dry
mass showed the accurate prediction with high R? of 0.852,
0.8526, 0.8424, 0.8529, 0.8063, and with low RMSE,
rRMSE, MAE, and very small BIAS of 0.0004, 0.0007,
0.0004, 0.0003, 0.0002, respectively. Furthermore, very
low BIAS values indicated that the predicted values from
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Fig. 6. Heatmap dataset of correlation coefficients among CCR
and the ground measured morphological and biomass traits.
PH - plant height, LAP - leaf area per plant, PDM - plant dry
mass, ADM - aboveground plant dry mass, LDM - leaf dry mass
per plant, CCR - canopy cover rate per plant.

the linear regression models were within the acceptable
limit.

Discussion

In the present study, we evaluated the performance of
predictive models for morphological and biomass traits
using smartphone image-derived CCR at early growth
stage of sunflower. CCR estimated from the top-view
canopy image of an individual plant was not only a canopy
parameter but also an image-derived phenotyping feature.
Results showed that CCR depended on accession in
an identical growth conditions.

There are different methods of determining the leaf area
(Padroén et al., 2016; dos Santos et al., 2016; Nakanwagi
et al., 2018) and biomass (Wen et al., 2017), these can
either be destructive or nondestructive.

In the present study, CCR related to leaf area and
biomass can be easily estimated from the top-view canopy
image of an individual plant using IA software. It had
the significant and positive correlations with not only total
leaf area per plant related to leaf area development but also
biomass traits (Fig. 6).

Because total leaf area per plant in sunflower was
estimated as the sum of every leaf area [0.65 (width X
length)] according to Dosio et al. (2003), it is time-
consuming and labor-intensive. However, estimation of
CCR using IA software from smartphone images could
be proposed as one of the low-cost and simple, repeatable
assessment methods. These results that CCR was closely
related to both leaf area development and biomass increase
during early growing period supported that the rate of
canopy coverage over the ground has a strong correlation
with LAI (Banerjee et al., 2018).
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CCR can be estimated by the non-destructive and non-
invasive method using IA software without any significant
alteration of plant morphology. Significant levels for linear
regression models between the morphological and biomass
traits with CCR were shown with high R?, respectively
(Fig. 1 Suppl.). Furthermore, linear regression models
constructed using CCR produced the accurate prediction
for the morphological and biomass traits (Fig. 2 Suppl.).
Especially, the predicted values from models showed the
accurate prediction with high R* of more than 0.8529.
The predicted values were in relatively good agreement
with the ground measured ones for morphological and
biomass traits, respectively. In other words, the prediction
performance of all the models was relatively high.

The predicted results from top-view images at
early growth stage of sunflower supported the ones
that constructed the predictive models to examine
the quantitative relationship between the side-view
image-based features and plant biomass accumulation
in barley (Chen et al., 2018) and the models between
the side-view image-derived parameter and quantitative
traits related to plant architecture and biomass in rice (Jong
et al., 2021; 2025). These findings suggested that using
top-view image-derived field phenotyping can estimate
the morphological and biomass traits exactly and simply
during early growing period of plant, and reduce the field
workload largely and increase also the work efficiency
clearly.

The overall results from this study showed that
CCR extracted from the top-view images can be used as
the indirect and comprehensive descriptor for predicting
morphological and biomass traits during early growing
period in sunflower. In addition, our results provided
the support for the hypothesis that the predicted values
from the models constructed using image-derived canopy
parameter are similar to the ground measured values for
the morphological and biomass traits during early growing
period of sunflower.

Its application would be beneficial in the process of
optimizing crop management, comparing the performance
of different cultivars, and detecting potential adaptation
to biotic or abiotic stress (disease, insects, drought, and
salinity) in field environments. This methodology using
smartphone camera is adequate to the early growing
period of short and high crops, but it is inadequate to
the maturing period of high crops such as maize,
sugarcane and sorghum, because capturing the top-view
canopy image for high plants is difficult with smartphone
camera. In the future study, we intend to evaluate yield
components from CCR in accessions or lines with
high-yielding potential in crops.
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