biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 52:401-412, 2008 | DOI: 10.1007/s10535-008-0084-6

Physiology and biochemistry of waterlogging tolerance in plants

R. K. Sairam1,*, D. Kumutha1, K. Ezhilmathi1, P. S. Deshmukh1, G. C. Srivastava1
1 Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India

Waterlogging is a serious problem, which affects crop growth and yield in low lying rainfed areas. The main cause of damage under waterlogging is oxygen deprivation, which affect nutrient and water uptake, so the plants show wilting even when surrounded by excess of water. Lack of oxygen shift the energy metabolism from aerobic mode to anaerobic mode. Plants adapted to waterlogged conditions, have mechanisms to cope with this stress such as aerenchyma formation, increased availability of soluble sugars, greater activity of glycolytic pathway and fermentation enzymes and involvement of antioxidant defence mechanism to cope with the post hypoxia/anoxia oxidative stress. Gaseous plant hormone ethylene plays an important role in modifying plant response to oxygen deficiency. It has been reported to induce genes of enzymes associated with aerenchyma formation, glycolysis and fermentation pathway. Besides, nonsymbiotic-haemoglobins and nitric oxide have also been suggested as an alternative to fermentation for maintaining lower redox potential (low NADH/NAD ratio), and thereby playing an important role in anaerobic stress tolerance and signaling.

Keywords: anoxia; antioxidative enzymes; ethylene; fermentation; flooding; glycolysis; hypoxia; nitric oxide; non-symbiotic haemoglobin; oxidative stress; sugars
Subjects: anoxia; antioxidants, antioxidant enzymes; ethylene; flooding and recovery; glyoxal oxidase; hypoxia; sugars

Received: November 5, 2007; Accepted: May 3, 2008; Published: September 1, 2008  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Sairam, R.K., Kumutha, D., Ezhilmathi, K., Deshmukh, P.S., & Srivastava, G.C. (2008). Physiology and biochemistry of waterlogging tolerance in plants. Biologia plantarum52(3), 401-412. doi: 10.1007/s10535-008-0084-6
Download citation

References

  1. Agarwal, S., Sairam, R.K., Srivastava, G.C., Tyagi, A., Meena, R.C.: Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings.-Plant Sci. 169: 559-570, 2005. Go to original source...
  2. Albrecht, G., Wiedenroth, E.M.: Protection against activated oxygen following re-aeration of hypoxically pre-treated wheat roots. The response of the glutathione system.-J. exp. Bot. 45: 449-455, 1994. Go to original source...
  3. Arikado, H., Adachi, Y.: Anatomical and ecological responses of barley and some forage crops to the flooding treatment.-Bull. Fac. Agr. Mie Univ. 11: 1-29, 1955.
  4. Armstrong, A.C.: The effect of drainage treatments on cereal yields: results from experiments on clay lands.-J. agr. Sci. 91: 229-235, 1978. Go to original source...
  5. Armstrong, J., Armstrong, W.: Phragmites australis: a preliminary study of soil oxidizing sites and internal gas transport pathways.-New Phytol. 108: 373-382, 1988. Go to original source...
  6. Aschi-Smiti, S., Chaïbi, W., Brouquisse, R., Bérénice-Ricard, B., Saglio, P.: Assessment of enzyme induction and aerenchyma formation as mechanisms for flooding tolerance in Trifolium subterraneum 'Park'.-Ann. Bot. 91: 195-204, 2004. Go to original source...
  7. Bacanammwo, M., Purcell, L.C.: Soybean root morphological and anatomical traits associated with acclimation to flooding.-Crop Sci. 39: 143-149, 1999. Go to original source...
  8. Baxter-Burrell, A., Chang, R., Springer, P.S., Bailey-Serres, J.: Gene and enhancer trap transposable elements reveal oxygen deprivation-regulated genes and their complex patterns of expression in Arabidopsis.-Ann. Bot. 91: 129-141, 2003. Go to original source...
  9. Baxter-Burrell, A., Yang, Z., Springer, P.S., Bailey-Serres, J.: RopGAP4-dependent Rop-GTPase rheostat control of Arabidopsis oxygen deprivation tolerance.-Science 296: 2026-2028, 2002. Go to original source...
  10. Biemelt, S., Keetman, U., Albrecht, G.: Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings.-Plant Physiol. 116: 651-658, 1998. Go to original source...
  11. Biemelt, S., Keetman, U., Mock, H.P., Grimm, B.: Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia.-Plant Cell Environ. 23: 135-144, 2000. Go to original source...
  12. Blokhina, O.B., Chirkova, T.V., Fagerstedt, K.V.: Anoxic stress leads to hydrogen peroxide formation in plant cells.-J. exp. Bot. 52: 1-12, 2001. Go to original source...
  13. Blokhina, O.B., Fagerstedt, K.V., Chirkova, T.V.: Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration.-Physiol. Plant. 105: 625-632, 1999. Go to original source...
  14. Botrel, A., Kaiser, W.M.: Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status.-Planta 201: 496-501, 1997. Go to original source...
  15. Botrel, A., Magne, C., Kaiser, W.M.: Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia.-Plant Physiol. Biochem. 34: 645-652, 1996.
  16. Bradford, K.J.N.D., Yang, S.F.: Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants.-Plant Physiol 65: 322-326, 1980. Go to original source...
  17. Bragina, T.V., Rodionova, N.A., Grinieva, G.M.: Ethylene production and activation of hydrolytic enzymes during acclimation of maize seedlings to partial flooding.-Russ. J. Plant Physiol. 50: 794-798, 2003. Go to original source...
  18. Capone, R., Tiwari, B.S., Levine, A.: Rapid transmission of oxidative and nitrosative stress signals from roots to shoots in Arabidopsis.-Plant Physiol. Biochem. 42: 425-428, 2004. Go to original source...
  19. Cecchini, G.: Function and structure of complex II of the respiratory chain.-Annu. Rev. Biochem. 72: 77-109, 2003. Go to original source...
  20. Chang, W.W.P., Huang, L.M., Webster, C., Burlingame, A.L., Roberts, J.K.M.: Patterns of protein synthesis and tolerance of anoxia in roots tips of maize seedlings acclimated to a low oxygen environment, and identification of proteins by mass spectrometry.-Plant Physiol. 122: 295-317, 2000. Go to original source...
  21. Chung, H.J., Ferl, R.J.: Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment.-Plant Physiol. 121: 429-436, 1999. Go to original source...
  22. Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T., Neil, S.J.: NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures.-Plant J. 24: 667-677, 2000. Go to original source...
  23. Cohen, E., Kende, H.: In vivo 1-aminocyclopropane-1-carboxylate synthase activity in internodes of deep water rice: Enhancement by submergence and low oxygen levels.-Plant Physiol. 84: 282-286, 1987. Go to original source...
  24. Crawford, R.M.M., Braendle, R.: Oxygen deprivation stress in a changing environment.-J. exp. Bot. 47: 145-159, 1996. Go to original source...
  25. Dennis, E.S., Dolferus, R., Ellis, M., Rahman, M., Wu, Y., Hoeren, F.U., Grover, A., Ismond, K.P., Good, A.G., Peacock, W.J.: Molecular strategies for improving waterlogging tolerance in plants.-J. exp. Bot. 51: 89-97, 2000. Go to original source...
  26. Di Iorio, E.E.: Preparation of derivatives of ferrous and ferric haemoglobin.-Methods Enzymol. 76: 57-72, 1981. Go to original source...
  27. Dolferus, R., Klok, E.J., Delessert, C., Wilson, S., Ismond, K.P., Good, A.G., Peacock, W.J, Dennis, E.S.: Enhancing the anaerobic response.-Ann. Bot. 91: 111-117, 2003. Go to original source...
  28. Dordas, C., Hasinoff, B.B., Igamberdiev, A.U., Manach, N., Rivoal, J., Hill, R.D.: Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress.-Plant J. 35: 763-770, 2003b. Go to original source...
  29. Dordas, C., Hasinoff, B.B., Rivoal, J., Hill, R.D.: Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures.-Planta 219: 66-72, 2004. Go to original source...
  30. Dordas, C., Rivoal, J., Hill, R.D.: Plant haemoglobins, nitric oxide and hypoxic stress.-Ann. Bot. 91: 173-178, 2003a. Go to original source...
  31. Drew, M.C.: Sensing soil oxygen.-Plant Cell Environ 13: 681-693, 1990. Go to original source...
  32. Drew, M.C.: Oxygen deficiency and root metabolism: injury and acclimation under hypoxia.-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 223-250, 1997. Go to original source...
  33. Drew, M.C., Jackson, M.B., Gifford, S.C., Campbel, l.R.: Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency.-Planta 153: 217-224, 1981. Go to original source...
  34. Duff, S.M.G., Wittenberg, J.B., Hill, R.D.: Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin: optical spectra and reactions with gaseous ligands.-J. biol. Chem. 272: 16746-16752, 1997. Go to original source...
  35. Durner, J., Klessig, D.F.: Nitric oxide as a signal in plants.-Curr. Opin. Plant Biol. 2: 369-374, 1999. Go to original source...
  36. Durner, J., Wendehenne, D., Klessig, D.F.: Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose.-Proc. nat. Acad. Sci. USA 95: 10328-10333, 1998. Go to original source...
  37. Fan, T.W.M., Lane, A.N., Higashi, R.A.: In vivo and in vitro metabolomic analysis of anaerobic rice coleoptiles revealed unexpected pathways.-Russ. J. Plant Physiol. 50: 787-793, 2003. Go to original source...
  38. Fukao, T., Bailey-Serres, J.: Plant responses to hypoxia - is survival a balancing act?-Trends Plant Sci. 9: 449-456, 2004. Go to original source...
  39. Gunawardena, A., Pearce, D.M., Jackson, M.B., Hawes, C.R., Evans, D.E.: Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.).-Planta 212: 205-214, 2001. Go to original source...
  40. Guy, P.A., Sidaner, J.P., Schroeder, S., Edney, M., MacGregor, A.W., Hill, R.D.: Embryo phytoglobin gene expression as a measure of germination in cereals.-J. Cereal Sci. 36: 147-156, 2002. Go to original source...
  41. Hagler, L., Coppes, R.I., Jr., Herman, R.H.: Metmyoglobin reductase. Identification and purification of a reduced nicotinamide adenine dinucleotide-dependent enzyme from bovine heart which reduces metmyoglobin.-J. biol. Chem. 254: 6505-6514, 1979. Go to original source...
  42. Hänsch, R., Mendel, R.R., Cerff, R., Hehl, R.: Light-dependent anaerobic induction of the maize glyceraldehyde-3-phosphate dehydrogenase 4 (GapC4) promoter in Arabidopsis thaliana and Nicotiana tobacum.-Ann. Bot. 91: 149-154, 2003. Go to original source...
  43. Hill, R.D.: What are hemoglobins doing in plants?-Can. J. Bot. 76: 707-712, 1998. Go to original source...
  44. Igamberdiev, A.U., Baron, K., Manac'H-Little, N., Stoimenova, M., Hill, R.D.: The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling.-Ann. Bot. 96: 557-564, 2005. Go to original source...
  45. Igamberdiev, A.U., Hill, R.D.: Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathway.-J. exp. Bot. 55: 2473-2482, 2004. Go to original source...
  46. Jackson, M.B.: Ethylene and responses of plants to soil waterlogging and submergence.-Annu. Rev. Plant Physiol. 36: 145-174, 1985. Go to original source...
  47. Jackson, M.B., Armstrong, W.: Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence.-Plant Biol. 1: 274-287, 1999. Go to original source...
  48. Jackson, M.B., Drew, M.C.: Effects of flooding on growth and metabolism of herbaceous plants.-In: Kozlowski, T.T. (ed.): Flooding and Plant Growth. Pp. 47-128. Academic Press, Orlando 1984. Go to original source...
  49. Johnson, J.R., Cobb, B.G., Drew, M.C.: Hypoxic induction of anoxia tolerance in roots of Adh null Zea mays.-Plant Physiol. 105: 61-67, 1994. Go to original source...
  50. Justin, S.H.F.W., Armstrong, W.: Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa).-New Phytol. 118: 49-62, 1991. Go to original source...
  51. Kalashnikov, Yu.E., Balakhnina, T.I., Zakrzhevsky, D.A.: Effect of soil hypoxia on activation of oxygen and the system of protection from oxidative destruction in roots and leaves of Hordeum vulgare.-Russ. J. Plant Physiol. 41: 583-588, 1994.
  52. Kim, P.K., Zamora, R., Petrosko, P., Billiar, T.R.: The regulatory role of nitric oxide in apoptosis.-Int. Immunopharm. 1: 1421-1441, 2001. Go to original source...
  53. Klok, E.J., Wilson, I.W., Wilson, D., Chapman, S.C., Ewing, R.M., Somerville, S.C., Peacock, W.J., Dolferus, R., Dennis, E.S.: Expression profile analysis of the low-oxygen response in Arabidopsis root cultures.-Plant Cell 14: 2481-2494, 2002. Go to original source...
  54. Konings, H.: Ethylene-promoted formation of aerenchyma in seedling roots of Zea mays L. under aerated and non-aerated conditions.-Physiol. Plant. 54: 119-124, 1982. Go to original source...
  55. Lee, T.G., Jang, C.S., Kim, J.Y., Dong Sub Kim, D.S., Park, J.H., Kim, D.Y Seo, Y.W.: A Myb transcription factor (TaMyb1) from wheat roots is expressed during hypoxia: roles in response to the oxygen concentration in root environment and abiotic stresses.-Physiol. Plant. 129: 375-385, 2007. Go to original source...
  56. Lemke-Keyes, C.A., Sachs, M.M.: Anaerobic tolerant null: a mutant that allows Adh1 nulls to survive anaerobic treatment.-J. Hered. 80: 316-319, 1989a. Go to original source...
  57. Lemke-Keyes, C.A., Sachs, M.M.: Genetic variation for seedling tolerance to anaerobic stress in maize germplasm.-Maydica 34: 329-337, 1989b.
  58. Mergemann, H., Sauter, M.: Ethylene induces epidermal cell death at the site of adventitious root emergence in rice.-Plant Physiol. 124: 609-614, 2000. Go to original source...
  59. Meyerhoff, P.A., Fox, T.C., Travis, R.L., Huffaker, R.C.: Characterization of the association of nitrate reductase with barley (Hordeum vulgare L.) root membranes.-Plant Physiol. 104: 925-936, 1994. Go to original source...
  60. Monk, L.S, Fagerstedt, K.V., Crawford, R.M.M.: Superoxide dismutase as an anaerobic polypeptide - a key factor in recovery from oxygen deprivation in Iris pseudacorus.-Plant Physiol. 85: 1016-1020, 1987. Go to original source...
  61. Moran, J.F., Sun, Z., Sarath, G., Arredondo-Peter, R., James, E.K., Becana, M., Klucas, R.V.: Molecular cloning, functional characterization, and subcellular localization of soybean nodule dihydrolipoamide reductase.-Plant Physiol. 128: 300-313, 2002. Go to original source...
  62. Musgrave, A., Jackson, M.B., Long, E.: Gallitriche stem elongation is controlled by ethylene and gibberellin.-Nature New Biol. 238: 93-96, 1972. Go to original source...
  63. Nie, X.Z., Hill, R.D.: Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue.-Plant Physiol. 114: 835-840, 1997. Go to original source...
  64. Olive, M.R, Peacock, W.J., Dennis, E.S.: The anaerobic responsive element contains two GC-rich sequences essential for binding a nuclear protein and hypoxic activation of the maize Adh1 promoter.-Nucleic Acid Res. 19: 7053-7060, 1991. Go to original source...
  65. Olson, D.C., Oetiker, J.H., Yang, S.F.: Analysis of LE-ACS3, a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants.-J. biol. Chem. 270: 14056-14061, 1995. Go to original source...
  66. Pastori, G.M., Foyer, C.H.: Common components, networks, and pathways of cross-tolerance to stress. The central role of 'redox' and abscisic acid-mediated controls.-Plant Physiol. 129: 7460-7468, 2002. Go to original source...
  67. Peng, H.P., Chan, C.S., Shih, M.C., Yang, S.F.: signaling events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis.-Plant Physiol. 126: 742-749, 2001. Go to original source...
  68. Peschke, V.M., Sachs, M.M.: Characterization and expression of anaerobically induced maize transcripts.-Plant Physiol. 104: 387-394, 1994. Go to original source...
  69. Ponnamperuma, F.N.: The chemistry of submerged soils.-Adv. Agron. 24: 29-96, 1972. Go to original source...
  70. Pradet, A., Bomsel, J.L.: Energy metabolism in plants under hypoxia and anoxia.-In: Hook, D.D., Crawford, R.M.M. (ed.): Plant Life in Anaerobic Environments. Pp. 89-118. Ann. Arbor Sci. Publ., Ann Arbor 1978.
  71. Recard, B., Van Toi, T., Chourey, P., Saglio, P.: Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using double mutant.-Plant Physiol. 116: 1323-1331, 1998. Go to original source...
  72. Rieu, I., Cristescu, S.M., Harren, F.J.M., Huibers, W., Voesenek, L.A.C.J., Mariani, C., Vriezen, W.H.: RP-ACS1, a flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of Rumex palustris, is involved in rhythmic ethylene production.-J. exp. Bot. 56: 841-849, 2005. Go to original source...
  73. Roberts, J.K.M., Callis, J., Jardetzky, O., Walbot, V., Freeling, M.: Cytoplasmic acidosis as a determinant of flooding intolerance in plants.-Proc. nat. Acad. Sci. USA 81: 6029-6033, 1984a. Go to original source...
  74. Roberts, J.K.M., Callis, J., Wemmer, R., Walbot, V., Jardetzky, O.: Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia.-Proc. nat. Acad. Sci. USA 81: 3379-3383, 1984b. Go to original source...
  75. Saab, I.N., Sachs, M.M.: A flooding-induced xyloglucan endotransglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma.-Plant Physiol. 112: 385-391, 1996. Go to original source...
  76. Sachs, M.M., Freeling, M., Okomoto, R.: The anaerobic proteins of maize.-Cell 20: 761-767, 1980. Go to original source...
  77. Sachs, M.M., Subbaiah, C.C., Saab, I.N.: Anaerobic gene expression and flooding tolerance in maize.-J. exp. Bot. 47: 1-15, 1996. Go to original source...
  78. Setter, T.L., Kupkanchanakul, T., Kupkanchanakul, K., Bhekasut, P., Wiengweera, A., Greenway, H.: Concentrations of CO2 and O2 in floodwater and internodal lacunae of floating rice growing at 1-2 metre water depths.-Plant Cell Environ. 10: 767-776, 1987. Go to original source...
  79. Sinclair, J.: Changes in spinach thylakoid activity due to nitrite ions.-Photosynth. Res. 12: 255-263, 1987. Go to original source...
  80. Sowa, A., Duff, S.M.G., Guy, P.A., Hill, R.D.: Altering hemoglobin levels changes energy status in maize cells under hypoxia.-Proc. nat. Acad. Sci. USA 95: 10317-10321, 1998. Go to original source...
  81. Stöhr, C., Mäck, G.: Diurnal changes in nitrogen assimilation of tobacco roots.-J. exp. Bot. 52: 1283-1289, 2001. Go to original source...
  82. Stöhr, C., Ullrich, W.R.: A succinate-oxidizing nitrate reductase is located at the plasma membrane of plant roots.-Planta 203: 129-132, 1997. Go to original source...
  83. Stöhr, C., Ullrich, W.R.: Generation and possible roles of NO in plant roots and their apoplastic space.-J. exp. Bot. 53: 2293-2303, 2002. Go to original source...
  84. Stöhr, C., Strube, F., Marx, G., Ullrich, W.R., Rockel, P.A.: Plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite.-Planta 212: 835-841, 2001. Go to original source...
  85. Stünzi, J.T., Kende, H.: Gas composition in the internal air spaces of deep water rice in relation to growth induced by submergence.-Plant Cell Physiol. 30: 49-56, 1989. Go to original source...
  86. Subbaiah, C.C., Sachs, M.M.: Molecular and cellular adaptations of maize to flooding stress.-Ann. Bot. 91: 119-127, 2003. Go to original source...
  87. Taylor, E.R., Nie, X.Z., MacGregor, A.W., Hill, R.D.: A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions.-Plant mol. Biol. 24: 853-862, 1994. Go to original source...
  88. Topunov, A.F., Melik-Sarkisian, S.S., Lysenko, L.A., Kretovich, V.L.: [Properties of methemoglobin reductase from lupine nodules.]-Biokhimiya 45: 2053-2058, 1980. [In Russ.]
  89. Trevaskis, B., Watts, R.A., Andersson, C., Llewellyn, D., Hargrove, M.S., Olson, J.S., Dennis, E.S. Peacock, W.J.: Two haemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins.-Proc. nat. Acad. Sci. USA 94: 12230-12234, 1997. Go to original source...
  90. Ushimaru, T., Maki, Y., Sano, S., Koshiba, K., Asada, K., Tsuji, H.: Induction of enzymes involved in the ascorbate-dependent antioxidative system, namely ascorbate peroxidase, mono dehydroascorbate reductase and dehydroascorbate reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water.-Plant Cell Physiol. 38: 541-549, 1997. Go to original source...
  91. Van der Straeten, D., Zhou, Z., Prinsen, E., Van Onckelen, H.A., Van Montagu, M.C.: A comparative molecular-physiological study of submergence response in lowland and deepwater rice.-Plant Physiol. 125: 955-968, 2001. Go to original source...
  92. Van Toai, T.T., Bolles, C.S.: Postanoxic injury in soybean (Glycine max) seedlings.-Plant Physiol. 97: 588-592, 1991. Go to original source...
  93. Visser, E.J.W., Bogemann, G., Blom, C.W.P.M., Voesenek, L.A.C.J.: Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots.-J. exp. Bot. 47: 403-410, 1996. Go to original source...
  94. Visser, E.J.W., Bogemann, G.M., Van de Steeg, H.M., Pierik, R., Blom, W.P.M.: Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation.-New Phytol. 148: 93-103, 2000. Go to original source...
  95. Visser, E.J.W., Nabben, R.H.M., Blom, C.W.P.M., Voesenek, L.A.C.J.: Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentration.-Plant Cell Environ. 20: 647-653, 1997. Go to original source...
  96. Voesenek, L.A.C.J., Banga, M., Their, R.H., Mudde, C.M., Harren, F.M., Barendse, G.W.M., Blom, C.W.P.M.: Submergence-induced ethylene synthesis, entrapment, and growth in two plant species with contrasting flooding resistances.-Plant Physiol. 103: 783-791, 1993. Go to original source...
  97. Voesenek, L.A.C.J., Blom, C.W.P.M., Pourvels, R.H.W.: Root and shoot development of Rumex species under waterlogged conditions.-Can. J. Bot. 67: 1865-1869, 1989. Go to original source...
  98. Vriezen, W.H., Hulzink, R., Mariani, C., Voesenek, L.A.C.J.: 1-aminocyclopropane-1-carboxylate oxidase activity limits ethylene biosynthesis in Rumex palustris during submergence.-Plant Physiol. 121: 189-196, 1999. Go to original source...
  99. Wang, R., Guegler, K., LaBrie, S.T., Crawford, N.M. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate.-Plant Cell 12: 1491-1510, 2000. Go to original source...
  100. Ward, M.R., Grimes, H.D., Huffaker, R.C.: Latent nitrate reductase activity is associated with the plasma membrane of corn roots.-Planta 177: 470-475, 1989. Go to original source...
  101. Watkin, E.L.J., Campbell, C.J., Greenway, H.: Root development and aerenchyma formation in two wheat cultivars and one Triticale cultivar grown in stagnant agar and aerated nutrient solution.-Ann. Bot. 81: 349-354, 1998. Go to original source...
  102. Wollenweber-Ratzer, B., Crawford, R.M.M.: Enzymatic defence against post-anoxic injury in higher plants.-Proc. roy. Soc. Edinburgh 102B: 381-390, 1994. Go to original source...
  103. Yamasaki, H., Sakihama, Y., Takahashi, S.: An alternative pathway of nitric oxide production: new features of an old enzyme.-Trends Plant Sci. 4: 128-129, 1999. Go to original source...
  104. Yamasaki, H., Sakihama, Y.: Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species.-FEBS Letts. 468: 89-92, 2000. Go to original source...
  105. Yan, B., Da, Q., Liu, X., Huang, S., Wang, Z.: Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves.-Plant Soil 179: 261-268, 1996. Go to original source...
  106. Zeng, Y., Avigne, W.T., Koch, K.E.: Rapid repression of maize invertase by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential and seedling survival.-Plant Physiol. 121: 599-608, 1999. Go to original source...