biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 63:671-680, 2019 | DOI: 10.32615/bp.2019.073

The methylation pattern of DNA and complex correlations with gene expressions during TuMV infection in Chinese cabbage

J. YU1, L.-W. GAO1, Y. YANG1, C. LIU1, R.-J. ZHANG1, F.-F. SUN2, L.-X. SONG3, D. XIAO1, T.-K.LIU1, X.-L. HOU1, C.-W. ZHANG1,*
1 State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China
2 Nanjing Vegetable Science Research Institute, Nanjing, 210095, P.R. China
3 Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, P.R. China

Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most important economic crops. However, its yield and quality can be severely threatened by Turnip mosaic virus (TuMV). Emerging evidence indicates that epigenetic mechanisms, especially DNA methylation, play an important role in regulating gene expression. Therefore, identification of resistance genes modified by DNA methylation during the virus infection would provide a critical clue for improving disease resistance breeding programs. Here, we present detailed analysis for the correlation of DNA methylation and gene expression involved in several anti-pathogen pathways. We also found that different methylation patterns exist in different methylation sites (CG, CHG, and CHH, where H represents A, G, or T) and genomic regions. Furthermore, we identified disease-resistant genes related to the nucleotide binding site-leucine-rich repeats family, auxin, salicylic acid signaling transduction, cell wall biosynthesis, and protein degradation among the different methylated genes (DMGs) suggesting that these genes may be modified by DNA methylation and work together to activate an immune response. The identified DMGs are a valuable resource for discovering resistance genes. Our study not only provides valuable data for future biotechnology research and epigenetic studies, but also helps to explore how the epigenetic mechanisms modify antiviral pathways.

Keywords: auxin, Brassica rapa, disease resistance, epigenetic mechanisms, NBS-LRR, salicylic acid.

Received: October 15, 2018; Revised: April 12, 2019; Accepted: May 9, 2019; Published online: November 8, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
YU, J., GAO, L.-W., YANG, Y., LIU, C., ZHANG, R.-J., SUN, F.-F., ... ZHANG, C.-W. (2019). The methylation pattern of DNA and complex correlations with gene expressions during TuMV infection in Chinese cabbage. Biologia plantarum63, Article 671-680. https://doi.org/10.32615/bp.2019.073
Download citation

Supplementary files

Download fileYu5980 Suppl.pdf

File size: 184.1 kB

References

  1. Ayaka, F., Satoko, T., Takahiro, H., Hideyuki, M., Tsuyoshi, I.: Ascorbic acid accumulates as a defense response to turnip mosaic virus in resistant brassica rapa cultivars. - J. exp. Bot. 67: 4391-4402, 2016. Go to original source...
  2. Bird, A.: DNA methylation patterns and epigenetic memory. - Genes Dev. 16: 6-2, 2002. Go to original source...
  3. Bieri, S., Mauch, S., Shen, Q.H., Peart, J., Devoto, A., Casais, C., Ceron, F., Schulze, S., Steinbi, H.H., Shirasu, K., Schulze-Leferta, P.: RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. - Plant Cell 16: 3480-3495, 2004. Go to original source...
  4. Belkhadir, Y., Subramaniam, R., Dangl, J.L.: Plant disease resistance protein signaling: NBS-LRR proteins and their partners. - Curr. Opin. Plant Biol. 7: 391-399, 2004. Go to original source...
  5. Chan, S.W.L., Henderson, I.R., Jacobsen, S.E.: Gardening the genome: DNA methylation in Arabidopsis thaliana. - Natur. Rev. Genet. 6: 590-590, 2005. Go to original source...
  6. Cheng, Y.T., Li, Y., Huang, S., Huang, Y., Dong., X.N., Zhang, Y.L., Li, X.: Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F- box (SCF)-mediated protein degradation. - Proc. nat. Acad. Sci. USA 108: 14694-14699, 2011. Go to original source...
  7. Dalmay, T., Hamilton, A.J., Rudd, S., Angell, S., Baulcombe, D.C.: An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. - Cell 101: 543-553, 2000. Go to original source...
  8. De Young, B.J., Innes, R.W.: Plant NBS-LRR proteins in pathogen sensing and host defense. - Natur. Immunol. 7: 1243-1249, 2006. Go to original source...
  9. Dheda, K., Huggett, J.F., Bustin, S.A., Johnson, M.A., Rook, G., Zumla, A.: Validation of housekeeping genes for normalizing RNA expression in real-time PCR. - Biotechniques 37: 112-119, 2004. Go to original source...
  10. Gan, E.S., Huang, J., Ito, T.: Functional roles of histone modifification, chromatin remodeling and microRNAs in Arabidopsis flower development. - Int. Rev. Cell mol. Biol. 305: 115-161, 2013. Go to original source...
  11. Gou, M., Shi, Z., Zhu, Y., Bao, Z., Wang, G., Hua, J.: The F-box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation. - Plant J. 69: 411-420, 2012. Go to original source...
  12. Holt, B.F., Belkhadir, Y., Dangl, J.L.: Antagonistic control of disease resistance protein stability in the plant immune system. - Science 309: 929-932, 2005. Go to original source...
  13. Hsieh, T.F., Ibarra, C.A., Silva, P., Zemach, A., Eshed-Williams, L., Fischer, L.R., Zilberman, D.: Genome-wide demethylation of Arabidopsis endosperm. - Science 324: 1451-1454, 2009. Go to original source...
  14. Huang, S., Chen, X.J., Zhong, X.H., Li, M., Ao, K., Huang, J.H., Li, X.: Plant TRAF proteins regulate NLR immune receptor turnover. - Cell Host Microbes 20: 271-271, 2016. Go to original source...
  15. Huang, Y., Minaker, S., Roth, C., Huang, S., Hieter, P., Lipka, V., Wiermer, M.: An E4 ligase facilitates polyubiquitination of plant immune receptor resistance proteins in Arabidopsis. - Plant Cell 26: 485- 496, 2014. Go to original source...
  16. Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P., Valent, B.: Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. - EMBO J. 19: 4004-4014, 2000. Go to original source...
  17. Jones, P.A., Baylin, S.B.: The fundamental role of epigenetic events in cancer. - Nature Rev. Genet. 3: 415-428, 2002. Go to original source...
  18. Kesarwani, M., Yoo, J., Dong, X.: Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. - Plant Physiol. 144: 336-346, 2007. Go to original source...
  19. Law, J.A., Jacobsen, S.E.: Establishing, maintaining and modifying DNA methylation patterns in plants and animals. - Nat. Rev. Genet. 11: 204-220, 2010. Go to original source...
  20. Kieffer, M., Neve, J., Kepinski, S.: Defining auxin response contexts in plant development. - Curr. Opin. Plant Biol. 13: 12-20, 2010. Go to original source...
  21. Li, B., Lu, D., Shan, L.: Ubiquitination of pattern recognition receptors in plant innate immunity. - Mol. Plant Pathol. 15: 737-746, 2014. Go to original source...
  22. Li, X., Yang, D.L., Sun, L., Li, Q., Mao, B., He, Z.: The systemic acquired resistance regulator OsNPR1 attenuates growth by repressing auxin signaling through promoting IAA-amido synthase expression. - Plant Physiol. 172: 546-558, 2016. Go to original source...
  23. Mattiske, J.R., Mann, D.M.: RNA interference in mammalian DNA methylation 1. - Biochem. Cell Biol. 90: 70-77, 2012. Go to original source...
  24. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, D.G.J.: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. - Science 312: 436-439, 2006. Go to original source...
  25. Park, C.H., Shirsekar, G., Bellizzi, M., Chen, S., Songkumarn, P., Xie, X., Shi, X., Ning, Y., Zhou, B.: The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice. - PLOS Pathogens 12: 210-210, 2016. Go to original source...
  26. Pajerowska-Mukhtar, K.M., Emerine, D.K., Mukhtar, M. S.: Tell me more: roles of NPRs in plant immunity. - Trends Plant Sci. 18: 402-411, 2013. Go to original source...
  27. Pikaard, C.S., Scheid O.M.: Epigenetic regulation in plants. - Cold Spring Harbor Persp. Biol. 6: a019315, 2014. Go to original source...
  28. Schmittgen, T.D., Livak, K.J.: Analyzing real-time PCR data by the comparative C-T method. - Natur. Protocols 3: 1101-1108, 2008. Go to original source...
  29. Smalle, J., Vierstra, R.D.: The ubiquitin 26S proteasome proteolytic pathway. - Annu. Rev. Plant Biol. 55: 555-590, 2004. Go to original source...
  30. Sterling, J.D., Quigley, H.F., Orellana, A., Mohnen, D.: The catalytic site of the pectin biosynthetic enzyme alpha-1,4- galacturonosyltransferase is located in the lumen of the Golgi. - Plant Physiol. 127: 360-371, 2001. Go to original source...
  31. Tang, G., Reinhart, B.J., Bartel, D.P., Zamore, P.D.: A biochemical framework for RNA silencing in plants. - Genes Dev. 17: 49-63, 2003. Go to original source...
  32. Ting, J.P.Y., Willingham, S.B., Bergstralh, D.T.: NLRs at the intersection of cell death and immunity. - Natur. Rev. Immunol. 8: 372-379, 2008. Go to original source...
  33. Tomlinson, J.A.: Epidemiology and control of virus disease of vegetables. - Ann. appl. Biol. 110: 661-681, 1987. Go to original source...
  34. Trujillo, M., Shirasu, K.: Ubiquitination in plant immunity. - Curr. Opin. Plant Biol. 13: 402-408, 2010. Go to original source...
  35. Van Loon, L.C., Rep, M., Pieterse, C.M.J.: Significance of inducible defense-related proteins in infected plants. - Annu. Rev. Phytopathol. 44: 135-162, 2006. Go to original source...
  36. Wang, D., Pajerowska-Mukhtar, K., Culler, A.H., Dong, X.: Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. - Curr. Biol. 17: 1784-1790, 2007. Go to original source...
  37. Wang, T., Chang, C., Gu, C., Tang, S., Xie, Qi., Shen, Q.H.: An E3 ligase affects the NLR receptor stability and immunity to powdery mildew. - Plant Physiol. 172: 2504-2515, 2016a. Go to original source...
  38. Wang, J., Wang, X.R., Zhou, Q., Yang, J.M., Guo, H.X., Yang, L.J., Liu, W.Q.: iTRAQ protein profile analysis provides integrated insight into mechanisms of tolerance to TMV in tobacco (Nicotiana tabacum). - J. Proteomics 132: 21-30, 2016b. Go to original source...
  39. Xian, H., Li, J., Zhang, L., Li, D.: Cloning and functional analysis of a novel chitinase gene Trchi1 from Trichothecium roseum. - Biotechnol. Lett. 34: 1921-1928, 2012. Go to original source...
  40. Xu, F., Huang, Y., Li, L., Gannon, P., Linster, E., Huber, M., Kapos, P., Bienvenut, W., Polevoda, B., Meinnel, T., Hell, R., Giglione, C., Zhang, Y.: Two N-Terminal acetyltransferases antagonistically regulate the stability of a nod-like receptor in Arabidopsis. - Plant Cell 27: 1547-1562, 2015. Go to original source...
  41. Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, W.L.S., Huaming, Chen., Henderson, I.R., Shinn, P., Pellegrini, M., Jacobsen, S.E.: Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. - Cell 126: 1189-1201, 2006. Go to original source...
  42. Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T., Henikoff, S.: Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. - Nat. Genet. 39: 61-69, 2007. Go to original source...