Biologia plantarum 68:122-127, 2024 | DOI: 10.32615/bp.2024.007
Evaluation of silage and grain yield of different maize (Zea mays L.) genotypes in organic and conventional conditions
- 1 Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, H-2462 Martonvásár, Hungary
- 2 Institute of Land Use, Engineering and Precision Farming Technology, University of Debrecen, H-4032 Debrecen, Hungary
The intensification of agriculture is closely linked to high emissions of greenhouse gases. To address the challenges, the European Commission published the European Green Deal in 2019. The aim of our study was to compare the yield of maize genotypes bred in Martonvásár in three different cropping environments (organic, irrigated conventional, and non-irrigated conventional). The silage and grain yields of different maize hybrids and parental lines were evaluated in a three-replicate small plot experiments. The green mass yield of the organic area was 19 and 15% lower compared to the irrigated conventional and non-irrigated conventional treatments. The dry matter yield of the maize hybrids was 12.9 t ha-1 in the organic area, 15.7 t ha-1 in the irrigated, and 15.8 t ha-1 in the non-irrigated environment. Hybrids had significantly better grain yield in the conventional systems (irrigated: 10.0 t ha-1 and non-irrigated: 9.8 t ha-1) than in the organic environment (7.6 t ha-1). The difference in yield results was not as considerable for the parental lines as for the hybrids. In addition, our results indicated high presence of heterosis for yields. The heterosis of the grain yields was two times higher than for silage yields. Heterosis was highest at the non-irrigated conventional area.
Keywords: conventional agriculture, grain yield, maize genotypes, organic farming, silage yield.
Received: September 21, 2023; Revised: January 29, 2024; Accepted: May 29, 2024; Published online: August 5, 2024 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Chairi F., Elazab A., Sanchez-Bragado R. et al.: Heterosis for water status in maize seedlings. - Agr. Water Manage. 164: 100-109, 2016.
Go to original source... - Connor D.J.: Organic agriculture cannot feed the world. - Field Crop. Res. 106: 187-190, 2008.
Go to original source... - de Ponti T., Rijk B., van Ittersum M.K.: The crop yield gap between organic and conventional agriculture. - Agr. Syst. 108: 1-9, 2012.
Go to original source... - Drexler D., Varga K., Allacherné Szépkuthy K.: [The development plan of organic farming in Hungary in the light of EU directives.] - In: Polgár Z., Karsai I., Bóna L. et al. (ed.): XXVIII. Növénynemesítési Tudományos Napok. [XXVIII. Plant Breeding Science Days.] Pp. 12-17. Magyar Növénynemesítők Egyesülete, Keszthely 2022. [In Hungarian]
- EU Jog 2021. Available at: https://eur-lex.europa.eu/legal-content/HU/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN.
- European Commission 2021a. Available at: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_hu.
- European Commission 2021b. Available at: https://ec.europa.eu/commission/presscorner/detail/hu/QANDA_20_885.
- FAO 2023: FAOSTAT. Crops and livestock products. Available at: https://www.fao.org/faostat/en/#data/QCL.
- Gov. HU 2022. Available at: https://kormany.hu/dokumentumtar/nemzeti-cselekvesi-terv-az-okologiai-gazdalkodas-fejleszteseert.
- Kaplan M., Baran O., Unlukara A. et al.: The effects of different nitrogen doses and irrigation levels on yield, nutritive value, fermentation and gas production of corn silage. - Turk. J. Field Crops 21: 100-108, 2016.
Go to original source... - Kniss A.R., Savage S.D., Jabbour R.: Commercial crop yields reveal strengths and weaknesses for organic agriculture in the United States. - PLoS ONE 11: e0161673, 2016.
Go to original source... - KSH 2022a. Available at: https://www.ksh.hu/stadat_files/mez/hu/mez0008.html.
- KSH 2022b. Available at: https://www.ksh.hu/stadat_files/mez/hu/mez0038.html.
- KSH 2023a. Available at: https://www.ksh.hu/stadat_files/mez/hu/mez0012.html.
- KSH 2023b. Available at: https://www.ksh.hu/interaktiv/grafikonok/vilag_nepessege.html.
- Lynch J.P., O'Kiely P., Doyle E.M.: Yield, nutritive value and ensilage characteristics of whole-crop maize, and of the separated cob and stover components - nitrogen, harvest date and cultivar effects. - J. Agr. Sci. 151: 347-367, 2013.
Go to original source... - Majid M.A., Islam M.S., EL Sabagh A. et al.: Evaluation of growth and yield traits in corn under irrigation regimes in sub-tropical climate. - J. Exp. Biol. Agric. Sci. 5: 143-150, 2017.
- Masoero F., Gallo A., Giuberti G. et al.: Effect of water-saving irrigation regime on whole-plant yield and nutritive value of maize hybrids. - J. Sci. Food Agr. 93: 3040-3045, 2013.
Go to original source... - Meng F., Qiao Y., Wu W. et al.: Environmental impacts and production performances of organic agriculture in China: A monetary valuation. - J. Environ. Manage. 188: 49-57, 2017.
Go to original source... - Oliveira L.R, Miranda G.V., DeLima R.O. et al.: Combining ability of tropical maize cultivars in organic and conventional production systems. - Cienc. Rural 41: 739-745, 2011.
Go to original source... - Otegui M.E., Cirilo A.G., Uhart S.A., Andrade F.H.: Maize. - In: Sadras V.O., Calderini D.F. (ed.): Crop Physiology Case Histories for Major Crops. Pp. 2-43. Academic Press, London 2021.
Go to original source... - Pepó P., Sárvári M.: [Maize production.] - In: Pepó P., Sárvári M. (ed.): [Growing Cereal Crops.] Pp. 40-83. Debreceni Egyetem, Debrecen 2011. [In Hungarian]
- Ramirez-Cabral N.Y.Z., Kumar L., Shabani F.: Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). - Sci. Rep.-UK 7: 5910, 2017.
Go to original source... - Reganold J.P., Wachter J.M.: Organic agriculture in the twenty-first century. - Nat. Plants 2: 15221, 2016.
Go to original source... - Revilla P., de Galarreta J.I.R., Malvar R.A. et al.: Breeding maize for traditional and organic agriculture. - Euphytica 205: 219-230, 2015.
Go to original source... - Revilla P., Landa A., Rodríguez V.M. et al.: Maize for bread under organic agriculture. - Span. J. Agric. Res. 6: 241-247, 2008.
Go to original source... - Sang Z., Zhang Z., Yang Y. et al.: Heterosis and heterotic patterns of maize germplasm revealed by a multiple-hybrid population under well-watered and drought-stressed conditions. - J. Integr. Agr. 21: 2477-2491, 2022.
Go to original source... - Tóthné Zsubori Z., Pintér J., Spitkó T. et al.: Yield and chemical composition of plant parts of silage maize (Zea mays L) hybrids and their interest for biogas production. - Maydica 58: 34-41, 2013.
- Trewavas A.: Urban myths of organic farming. - Nature 410: 409-410, 2001.
Go to original source... - van Beek C.L., Meerburg B.G., Schils R.L.M. et al.: Feeding the world's increasing population while limiting climate change impacts: linking N2O and CH4 emissions from agriculture to population growth. - Environ. Sci. Policy 13: 89-96, 2010.
Go to original source... - Vogel E., Donat M.G., Alexander L.V. et al.: The effects of climate extremes on global agricultural yields. - Environ. Res. Lett. 14: 054010, 2019.
Go to original source... - Willer H., Schlatter B., Trávníček J.: The World of Organic Agriculture: Statistics and Emerging Trends 2023. Pp. 358. FiBL & IFOAM - Organics International, Frick 2023.



