biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 43:85-91, 2000 | DOI: 10.1023/A:1026559131192

Quantitative Changes in Maize Membrane Proteins Induced by Aluminium

I. Mistrík1, L. Tamás1, J. Huttová1
1 Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was used for monitoring Al-induced changes in polypeptide composition of membrane proteins isolated from 3-d-old maize seedlings subjected to aluminium stress. Analysis of peripheral membrane proteins isolated from maize root showed an Al-induced increase in accumulation of 14 polypeptides with apparent molecular mass from 10 to 135 kDa. Qualitative differences were found between peripheral membrane proteins isolated from root tip (increased accumulation of 4 polypeptides with Mr 42 000 - 135 000) and from root base (increased accumulation of 10 polypeptides with Mr 10 000 - 59 000). On the other hand, no Al-induced changes were observed in peripheral membrane proteins isolated from maize coleoptile and integral membrane proteins isolated either from root or coleoptile. These results indicate that peripheral membrane proteins undergo considerable changes during 24-h Al treatment while integral membrane proteins pattern is stable.

Keywords: coleoptile; polypeptide patterns; root; stress proteins; Zea mays
Subjects: coleoptile, membrane proteins, Al stress; maize, membrane proteins; membrane proteins, aluminium; polypeptide patterns, aluminium; proteins, membrane, Al stress; root, membrane proteins, Al stress; stress proteins, aluminium; Zea mays

Published: March 1, 2000  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Mistrík, I., Tamás, L., & Huttová, J. (2000). Quantitative Changes in Maize Membrane Proteins Induced by Aluminium. Biologia plantarum43(1), 85-91. doi: 10.1023/A:1026559131192
Download citation

References

  1. Basu, A., Basu, U., Taylor, G.J.: Induction of microsomal membrane proteins in roots of an aluminum-resistant cultivar of Triticum aestivum L. under conditions of aluminum stress.-Plant Physiol. 104: 1007-1013, 1994. Go to original source...
  2. Budiková, S., čiamporová, M., Ovečka, M., Polónyi, J.: Structural characterization of maize root tip cells under aluminium stress.-Acta Fac. Rer. Natur. Univ. Comen.-Physiol. Plant. 29: 53-56, 1997.
  3. Cakmak, I., Horst, W.J.: Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max).-Physiol. Plant. 83: 463-468, 1991. Go to original source...
  4. Campbell, T.A., Jackson, P.R., Xia, Z.L.: Effects of aluminum stress on alfalfa root proteins.-J. Plant Nutr. 17: 461-471, 1994. Go to original source...
  5. Cruz-Ortega, R., Ownby, J.D.: A protein similar to PR (pathogenesis-related) proteins is elicited by metal toxicity in wheat roots.-Physiol. Plant. 89: 211-219, 1993. Go to original source...
  6. Delhaize, E., Ryan, P.R.: Aluminum toxicity and tolerance in plants.-Plant Physiol. 107: 315-321, 1995. Go to original source...
  7. Didierjean, L., Frendo, P., Nasser, W., Genot, G., Marivet, J., Burkard, G.: Heavy-metal-responsive genes in maize: identification and comparison of their expression upon various forms of abiotic stress.-Planta 199: 1-8, 1996. Go to original source...
  8. Ezaki, B., Gardner, C.R., Ezaki, Y., Kondo, H., Matsumoto, H.: Protective roles of two aluminum (Al)-induced genes, HSP150 and SEDI of Saccharomyces cerevisiae, in Al and oxidative stresses.-FEMS Microbiol. Lett. 159: 99-105, 1998. Go to original source...
  9. Heukesloven, J., Dernick, R.: Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining.-Electrophoresis 6: 103-112, 1985. Go to original source...
  10. Horst, W.J.: The role of apoplast in aluminium toxicity and resistance of higher plants: a review.-Z. Pflanzenernähr. Bodenk. 158: 419-428, 1995. Go to original source...
  11. Huttová J., Tamás, L., Mistrík, I.: Quantitative changes in maize cytoplasmic proteins induced by aluminium.-Biol. Plant. 41: 547-554, 1998. Go to original source...
  12. Laemmli, U.K.: Cleveage of structural proteins during the assembly of the head of the bacteriophage T4.-Nature 277: 680-685, 1970. Go to original source...
  13. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent.-J. biol. Chem. 193: 265-275. 1951. Go to original source...
  14. Mistrík, I., Tamás, L., Huttová, J.: Effect of aluminium on root and leaf cytoplasmic proteins in maize.-Biológia (Bratislava) 53: 767-772, 1997.
  15. Miyasaka, S.C., Kochian, L.V., Shaff, J.E., Foy, C.D.: Mechanisms of aluminum tolerance in wheat. An investigation of genotypic differences in rhizosphere pH, K+, and H+ transport, and root-cell membrane potentials.-Plant Physiol. 91: 1188-1196, 1989. Go to original source...
  16. Olivetti, G.P., Cumming, J.R., Etherton, B.: Membrane potential depolarization of root cap cells preceds aluminum tolerance in snapbean.-Plant Physiol. 109: 123-129, 1995.
  17. Pellet, D.M., Grunes, D.L., Kochian, L.V.: Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).-Planta 196: 788-795, 1995. Go to original source...
  18. Pryde, G., Phillips, J.H.: Fractionation of membrane proteins by temperature-induced phase separation in Triton X-114.-Biochem. J. 233: 525-533, 1986. Go to original source...
  19. Rao, I.M., Ziegler, R.A., Vera, R., Sarkarung, S.: Selection and breeding for acid-soil tolerance in crops.-BioScience 43: 454-456, 1993. Go to original source...
  20. Rengel, Z.: Uptake of aluminium by plant cells.-New Phytol. 134: 389-406, 1996. Go to original source...
  21. Richards, K.D., Gardner, R.C.: The effect of aluminum treatment on wheat roots: expression of heat shock, histone and SHH genes.-Plant Sci. 98: 37-45, 1994. Go to original source...
  22. Richards, K.D., Schott, J., Sharma, Y.K., Davis, K.R., Gardnes, R.C.: Aluminum induces oxidative stress genes in Arabidopsis thaliana.-Plant Physiol. 116: 409-418, 1998. Go to original source...
  23. Ryan, P.R., Shaff, J.E., Kochian, L.V.: Aluminum toxicity in roots. Correlation among ionic currents, ion fluxes, and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars.-Plant Physiol. 99: 1193-1200, 1992. Go to original source...
  24. Snowden, K.C., Gardner, R.C.: Five genes induced by aluminum in wheat (Triticum aestivum L.) roots.-Plant Physiol. 103: 856-861, 1993. Go to original source...
  25. Snowden, K.C., Richards, K.D., Gardner, R.C.: Aluminum-induced genes. Induction by toxic metals, low calcium, and wounding and pattern of expression in root tips.-Plant Physiol. 107: 341-348, 1995. Go to original source...
  26. Stass, A., Horst, W.J.: Effect of aluminium on membrane properties of soybean (Glycine max) cells in suspension culture.-In: Date, R.A., Grundon, N.J., Rayment, G.E., Probert, M.E. (ed.): Plant Soil Interactions at Low pH. Pp. 279-284. Kluwer Academic Publishers, Dordrecht-Boston-London 1995. Go to original source...
  27. Tamás, L., Huttová, J., ®igová, Z.: Accumulation of stress-proteins in intracellular spaces of barley leaves induced by biotic and abiotic factors.-Biol. Plant. 39: 387-394, 1997. Go to original source...
  28. Yoshida, S.: Chemical and biophysical changes in the plasma membrane during cold acclimation of mulberry bark cells (Morus bombyx Koidz. cv. Goroji).-Plant Physiol. 76: 257-265, 1984. Go to original source...