biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 44:239-245, 2001 | DOI: 10.1023/A:1010251425995

Are Sclerophylls and Malacophylls Hydraulically Different?

A. Nardini1
1 Dipartimento di Biologia, Università degli Studi di Trieste, Trieste, Italia

This work tests the hypothesis that sclerophylls (i.e. hard-leaved species) would be less efficient than malacophylls (i.e. soft-leaved species) in terms of water transport through the stem as well as within the leaf blade. Mean leaf surface area (AL), leaf specific mass (LSM) as well as shoot (KWL), stem (KSL) and leaf (KLL) hydraulic conductances were measured in eight Mediterranean evergreen sclerophylls and eight temperate deciduous malacophylls. No difference was observed between the two groups in terms of KLL and of the contribution of leaves to the overall shoot hydraulic resistance. Leaves represented in all cases 48 to 90 % of the shoot hydraulic resistance, suggesting that the sclerophyllous habitus does not per se lead to low efficiency in water transport within the leaf blade. A weak negative relationship (r2 = 0.252) appeared to exist between KSL and LSM. This might provide an explanation for the lower growth rates of sclerophylls with respect to malacophylls.

Keywords: high pressure flow meter; leaf hydraulic conductance; leaf specific mass; shoot hydraulic conductance
Subjects: Calycanthus floridus; Castanea sativa; Cercis siliquastrum; conductance, hydraulic, shoot; Coryllus avelana; flow meter, high pressure, stem water transport; hydraulic conductance, leaf, shoot; Juglans regia; Laurus nobilis; leaf specific mass, dry mass/area ratio; Magnolia soulangeana; malacophylls, stem water transport; Malus domestica; myrtle; Myrtus communis; Olea europea; Phillyrea angustifolia; Quercus ilex; Quercus robur; Quercus suber; sclerophylls, stem water transport; Viburnum tinus

Published: June 1, 2001  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Nardini, A. (2001). Are Sclerophylls and Malacophylls Hydraulically Different? Biologia plantarum44(2), 239-245. doi: 10.1023/A:1010251425995
Download citation

References

  1. Acherar, M., Rambal, S.: Comparative water relations of four Mediterranean oak species.-Vegetatio 99-100: 177-184, 1992. Go to original source...
  2. Cochard, H., Peiffer, M., Le Gall, K., Granier, A.: Developmental control of xylem hydraulic resistances and vulnerability to embolism in Fraxinus excelsior L.: impacts on water relations.-J. exp. Bot. 48: 655-663, 1997. Go to original source...
  3. Cowling, R.M., Campbell, B.M.: The definition of leaf consistence categories in the Fynbos biome and their distribution along and altitudinal gradient in the South Eastern Cape.-J. South Afr. Bot. 92: 87-101, 1983.
  4. Fahn, A.: Plant Anatomy.-Butterworth-Heinemann, Oxford 1990.
  5. Fenaroli, L.: Alberi d'Italia. [Trees of Italy.]-Giunti Martello, Firenze 1984. [In Ital.]
  6. Grubb, P.J.: Sclerophylls, pachyphylls and pycnophylls: the nature and significance of hard leaf surfaces.-In: Juniper, B.E., Southwood, T.R.E. (eds.): Insects and the Plant Surface. Pp. 137-150. Edward Arnold, London 1986.
  7. Hevia, F., Minoletti, M.L., Decker, K.L.M., Boerner, R.E.J.: Foliar nitrogen and phosphorus dynamics of three Chilean Nothofagus (Fagaceae) species in relation to leaf lifespan.-Amer. J. Bot. 86: 447-455, 1999. Go to original source...
  8. Hubbard, R.M., Bond, B.J., Ryan, M.G.: Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees.-Tree Physiol. 19: 165-172, 1999. Go to original source...
  9. Jones, H.G., Sutherland, R.A.: Stomatal control of xylem embolism.-Plant Cell Environ. 14: 607-612, 1991. Go to original source...
  10. Kyriakopoulos, E., Richter, H.: Dessication tolerance and osmotic parameters in detached leaves of Quercus ilex L.-Acta oecol. 12: 357-367, 1991.
  11. Lo Gullo, M.A., Salleo, S.: Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions.-New Phytol. 108: 267-276, 1988. Go to original source...
  12. Loveless, A.R.: Further evidence to support a nutritional interpretation of sclerophylly.-Ann. Bot. 26: 551-561, 1962. Go to original source...
  13. Lucas, P.W., Pereira, B.: Estimation of the fracture toughness of leaves.-Func. Ecol. 4: 819-822, 1990. Go to original source...
  14. Martre, P., Durand, J.L., Cochard, H.: Changes in axial hydraulic conductivity along elongating leaf blades in relation to xylem maturation in tall fescue.-New Phytol. 146: 235-247, 2000. Go to original source...
  15. Miyazawa, S.I., Satomi, S., Terashima, I.: Slow leaf development of evergreen broad-leaved tree species in Japanese warm temperate forests.-Ann. Bot. 82: 859-869, 1998. Go to original source...
  16. Mooney, H.A.: Habitat, plant form and plant water relations in Mediterranean climate regions.-Ecol. Med. 8: 287-296, 1982. Go to original source...
  17. Nardini, A., Lo Gullo, M.A., Tracanelli, S.: Water relations of six sclerophylls growing near Trieste (Northeastern Italy): has sclerophylly a univocal functional significance?-G. bot. ital. 130: 811-828, 1996. Go to original source...
  18. Nardini, A., Pitt, F.: Drought resistance of Quercus pubescens as a function of root hydraulic conductance, xylem embolism and hydraulic architecture.-New Phytol.-143: 485-493, 1999. Go to original source...
  19. Nardini, A., Tyree, M.T.: Root and shoot hydraulic conductance of seven Quercus species.-Ann. Forest Sci. 56: 371-377, 1999. Go to original source...
  20. Pignatti, S.: Flora d'Italia. [Flora of Italy.]-Edagricole, Bologna 1982. [In Ital.]
  21. Poole, D.K., Miller, P.C.: Water relations of selected species of Chaparral and coastal sage communities.-Ecology 56: 1118-1128, 1975. Go to original source...
  22. Poorter, H., De Jong, R.: A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity.-New Phytol. 143: 163-176, 1999. Go to original source...
  23. Reich, P.B., Walters, M.B., Ellsworth, D.S., Vose, J.M., Volin, J.C., Gresham, C., Bowman, W.D.: Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114: 471-482, 1998. Go to original source...
  24. Rhizopoulou, S., Meletiou-Christou, M.S., Diamantoglou S.: Water relations for sun and shade leaves of four Mediterranean evergreen sclerophylls.-J. exp. Bot. 42: 627-635, 1991. Go to original source...
  25. Rhizopoulou, S., Mitrakos, K.: Water relations of evergreen sclerophylls. I. Seasonal changes in the water relations of eleven species from the same environment.-Ann. Bot. 65: 171-178, 1990. Go to original source...
  26. Ryan, M.G., Yoder, B.J.: Hydraulic limits to tree height and tree growth.-BioScience 47: 235-242, 1997. Go to original source...
  27. Salleo, S., Lo Gullo, M.A., Sclerophylly and plant water relations in three Mediterranean Quercus species.-Ann. Bot. 65: 259-270, 1990. Go to original source...
  28. Salleo, S., Nardini, A., Lo Gullo, M.A.: Is sclerophylly of Mediterranean evergreens an adaptation to drought?-New Phytol. 135: 603-612, 1997. Go to original source...
  29. Salleo, S., Nardini, A., Pitt, F., Lo Gullo, M.A.: Xylem cavitation and hydraulic control of stomatal conductance in laurel (Laurus nobilis L.).-Plant Cell Environ. 23: 71-79, 2000. Go to original source...
  30. Seddon, G.: Xerophytes, xeromorphs and sclerophylls: the history of some concepts in ecology.-Biol. J. linn. Soc. 6: 65-87, 1974. Go to original source...
  31. Sôber, A.: Hydraulic conductance, stomatal conductance, and maximal photosynthetic rate in bean leaves.-Photosynthetica 34: 599-603, 1997. Go to original source...
  32. Steudle, E., Peterson, C.A.: How does water get through roots?-J. exp. Bot. 49: 775-788, 1998. Go to original source...
  33. Turner, I.M.: Sclerophylly: primarily protective?-Funct. Ecol. 8: 669-675, 1994. Go to original source...
  34. Tyree, M.T., Cheung, Y.N.S.: Resistance to water flow in Fagus grandifolia leaves.-Can. J. Bot. 55: 2591-2599, 1977. Go to original source...
  35. Tyree, M.T., Ewers, F.W.: The hydraulic architecture of trees and other woody plants.-New Phytol. 119: 345-360, 1991. Go to original source...
  36. Tyree, M.T., Patiño, S., Bennink, J., Alexander, J.: Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field.-J. exp. Bot. 46: 83-94, 1995. Go to original source...
  37. Tyree, M.T., Sinclair, B., Lu, P., Granier, A.: Whole shoot hydraulic resistance in Quercus species measured with a high-pressure flowmeter.-Ann. Sci. forest. 50: 417-423, 1993. Go to original source...
  38. Tyree, M.T., Sobrado, M.A., Stratton, L.J., Becker, P.: Diversity of hydraulic conductance in leaves of temperate and tropical species: possible causes and consequences.-J. trop. Forest Sci. 11: 47-60, 1999.
  39. Tyree, M.T., Velez, V., Dalling, J.W.: Growth dynamics of root and shoot hydraulic conductance in seedlings of five neotropical tree species: scaling to show possible adaptation to differing light regimes.-Oecologia 114: 293-298, 1998. Go to original source...
  40. Tyree, M.T., Yanoulis, P.: The site of water evaporation from sub-stomatal cavities, liquid path resistances and hydroactive stomatal closure.-Ann. Bot. 46: 175-193, 1980. Go to original source...
  41. Willingen, C.V., Pammenter, N.W.: Relationship between growth and xylem hydraulic characteristics of clones of Eucalyptus spp. at contrasting sites.-Tree Physiol. 18: 595-600, 1998. Go to original source...
  42. Yang, S., Tyree, M.T.: Hydraulic architecture of Acer saccharum and A. rubrum: comparison of branches to whole trees and the contribution of leaves to hydraulic resistance.-J. exp. Bot. 45: 179-186, 1994. Go to original source...