biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 46:53-59, 2003 | DOI: 10.1023/A:1027376730521

Free Amino Acid, Protein and Water Content Changes Associated with Seed Development in Araucaria angustifolia

L.V. Astarita1, E.I.S. Floh1, W. Handro1
1 Plant Cell Biology Laboratory, Department of Botany, Institute of Biosciences, University of São Paulo, IB-USP, São Paulo, Brazil

The free amino acid, protein, water and dry matter contents were determined during the seed development of Araucaria angustifolia. Soluble and insoluble proteins in the mature seed represent 4.2 % of the fresh matter. The embryonic axis stored the greatest amount of soluble proteins, while cotyledons both with the embryonic axis showed the largest quantities of insoluble proteins in the mature seed. The greatest concentration of free amino acids was detected during the stage when cotyledons start to develop. Glutamic acid, aspartic acid, alanine and serine were predominant in the whole seed while arginine, lysine and γ-aminobutyric acid were present in great amounts only in cotyledons and embryonic axis. Although megagametophyte was important as a source of free amino acids, it was not the major protein storage organ in the mature seed. In the embryogenetic process, the rise of cotyledons is closely related to physiological and biochemical changes.

Keywords: Brazilian pine; zygotic embryogenesis
Subjects: amino acids; Araucaria angustifolia; Brazilian pine, seed development; germination; proteins, changes with seed development; water content, changes with seed development; zygotic embryogenesis

Published: July 1, 2003  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Astarita, L.V., Floh, E.I.S., & Handro, W. (2003). Free Amino Acid, Protein and Water Content Changes Associated with Seed Development in Araucaria angustifolia. Biologia plantarum46(1), 53-59. doi: 10.1023/A:1027376730521
Download citation

References

  1. Astarita, L.V., Guerra, M.P.: Early somatic embryogenesis in Araucaria angustifolia -induction and maintenance of embryonal-suspensor mass cultures.-Rev. bras. Fisiol. veg. 10: 113-118, 1998.
  2. Attree, S.M., Fowke, L.C.: Embryogeny of gymnosperms: advances in synthetic seed technology of conifers.-Plant Cell Tissue Organ Cult. 35: 1-35, 1993. Go to original source...
  3. Becker, W.M., Leaver, C.J., Weir, E.M., Riezmam, H.: Regulation of glyoxysomal enzymes during germination of cucumber.-Plant Physiol. 62: 542-549, 1978. Go to original source...
  4. Becwar, M.R., Nagmani, R., Wann, S.R.: Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda).-Can. J. Forest Res. 20: 810-817, 1990. Go to original source...
  5. Bewley, J.D., Black, M. (ed.): Seeds. Physiology of Development and Germination. 2nd Edition.-Plenum Press, New York 1994. Go to original source...
  6. Bozhkov, P.V., Ahn, I.S., Park, Y.G.: Two alternative pathways of somatic embryo origin from polyembryonic mature stored seeds of Pinus koraiensis Sieb et Zucc.-Can. J. Bot. 75: 509-512, 1997. Go to original source...
  7. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976. Go to original source...
  8. Calanni, J., Berg, E., Wood, M., Mangis, D., Boyce, R., Weathers, W., Sievering, H.: Atmospheric nitrogen deposition at a conifer forest: response of free amino acids in Engelmann spruce needles.-Environ. Pollut. 105: 79-89, 1999. Go to original source...
  9. Durzan, D.J., Chalupa, V.: Growth and metabolism of cells and tissues of jack pine (Pinus banksiana). 4. Changes in amino acids in callus and in seedlings of similar genetic origin.-Can. J. Bot. 54: 468-482, 1976a. Go to original source...
  10. Durzan, D.J., Chalupa, V.: Growth and metabolism of cells and tissues of jack pine (Pinus banksiana). Changes in free arginine and Sakaguchi-reactive compounds during callus growth and in germinating seedlings of similar genetic origin.-Can. J. Bot. 54: 483-495, 1976b. Go to original source...
  11. Durzan, D.J., Durzan, P.E.: Future technologies: model-reference control systems for the scale-up of embryogenesis and polyembryogenesis in cell suspension cultures.-In: Debergh, P.C., Zimmerman, R.H. (ed.): Micropropagation-Technology and Application. Pp. 389-423. Kluwer Academic Publishers, Dordrecht 1991. Go to original source...
  12. Egertsdotter, U., Von Arnold, S.: Development of somatic embryos in Norway spruce.-J. exp. Bot. 49: 155-162, 1998. Go to original source...
  13. Ferreira, A.G., Dietrich, S.M.C., Handro, W.: Changes in the metabolism of Araucaria angustifolia during the early phases of germination and growth.-Rev. bras. Bot. 2: 67-71, 1979.
  14. Ferreira, A.G., Handro, W.: Aspects of seed germination in Araucaria angustifolia (Bert.) O. Ktze.-Rev. bras. Bot. 2: 7-13, 1979.
  15. Flinn, B.S., Roberts, D.R., Webb, D.T., Sutton, B.C.S.: Storage protein changes during zygotic embryogenesis in interior spruce.-Tree Physiol. 8: 71-82, 1991. Go to original source...
  16. Galston, A.W., Kaur-Sawhney, R.: Polyamines as endogenous growth regulators.-In: Davies, P.J. (ed.): Plant Hormones -Physiology, Biochemistry and Molecular Biology. Pp. 158-178. Kluwer Academic Publishers, Dordrecht 1995. Go to original source...
  17. Gifford, D.: An electrophoretic analysis of the seed proteins from Pinus monticola and eight other species of pine.-Can. J. Bot. 66: 1808-1812, 1988. Go to original source...
  18. Gifford, D., Greenwood, J.S., Bewley, J.D.: Deposition of matrix and crystalloid storage proteins during protein body development in the endosperm of Ricinus communis L. cv. Hale seeds.-Plant Physiol. 69: 1471-1478, 1982. Go to original source...
  19. Gifford, E.M., Foster, A.S.: Morphology and Evolution of Vascular Plants.-W.H. Freeman Co., New York 1989.
  20. Groome, M.C., Seymour, R., Gifford, D.J.: Hydrolysis of lipid and protein reserves in loblolly pine seeds in relation to protein electrophoretic patterns following imbibition.-Physiol. Plant. 83: 99-106, 1991. Go to original source...
  21. Guerra, M.P., Silveira, V., Santos, A.L.W., Astarita, L.V., Nodari, R.O.: Somatic embryogenesis in Araucaria angustifolia (Bert.) O. Ktze.-In: Jain, S.M., Gupta, P.K., Newton, R.J. (ed.): Somatic Embryogenesis in Woody Plants. Vol. 6. Pp. 457-478. Kluwer Academic Publishers, Dordrecht 2000. Go to original source...
  22. Haines, R.J., Prakash, N.: Proembryo development and suspensor elongation in Araucaria Juss.-Aust. J. Bot. 28: 511-522, 1980. Go to original source...
  23. Hakman, I., Stabel, P., Engström, P., Eriksson, T.: Storage protein accumulation during zygotic and somatic embryo development in Picea abies (Norway spruce).-Physiol. Plant. 80: 441-445, 1990. Go to original source...
  24. Hausman, J.F., Kevers, C., Evers, D., Gaspar, Th.: Conversion of putrescine to γ-aminobutyric acid, an essential pathway for root formation by poplar shoots in vitro.-In: Altman, A.Y., Waisel, I. (ed.): Biology of Root Formation and Development. Pp. 133-139. Plenum Press, New York 1997. Go to original source...
  25. Heldt, H.-W.: Plant Biochemistry and Molecular Biology.-Oxford University Press, Oxford 1997.
  26. Lammer, D.L., Gifford, D.: Lodgepole pine germination. II. The seed proteins and their mobilization in the megagametophyte and embryonic axis.-Can. J. Bot. 57: 2544-2551, 1989. Go to original source...
  27. Lu, C.Y., Thorpe, A.: Somatic embryogenesis and plantlet regeneration in culture immature embryos of Picea glauca.-J. Plant Physiol. 128: 297-302, 1987. Go to original source...
  28. Marur, C.J., Sodek, L., Magalhães, A.C.N.: Free amino acids in leaves of cotton plants under water deficit.-Rev. bras. Fisiol. veg. 6: 103-108, 1994.
  29. Müntz, K., Becker, C., Pancke, J., Schlereth, A., Fischer, J., Horstmann, C., Kirkin, V., Neubohn, B., Senyuk, V., Shutov, A.: Protein degradation and nitrogen supply during germination and seedling growth of vetch (Vicia sativa L.).-J. Plant Physiol. 152: 683-691, 1998. Go to original source...
  30. Owens, J.N., Catalano, G.L., Aitken-Christie, J.: The reproductive biology of kauri (Agathis australis). IV. Late embryogeny, histochemistry, cone and seed morphology.-Int. J. Plant Sci. 158: 395-407, 1997. Go to original source...
  31. Roberts, D.R., Flinn, B.S., Webb, D.T., Webster, F.B., Sutton, B.C.S.: Characterization of immature embryos of interior spruce by SDS-PAGE and microscopy in relation to their competence for somatic embryogenesis.-Plant Cell Rep. 8: 285-288, 1989. Go to original source...
  32. Roberts, D.R., Flinn, B.S., Webb, D.T., Webster, F.B., Sutton, B.C.S.: Abscisic acid and indol-3-butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce.-Physiol. Plant. 78: 355-360, 1990. Go to original source...
  33. Satya Naraian, V., Nair, P.M.: Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants.-Phytochemistry 29: 367-375, 1990. Go to original source...
  34. Urquhart, A.A., Joy, K.W.: Use of phloem exudates technique in the study of amino acid transport in pea plants.-Plant Physiol. 68: 750-754, 1981. Go to original source...
  35. Valle, E.M., Boggio, S.B., Heldt, H.V.: Free amino acids content of phloem sap and fruits in Lycopersicon esculentum.-Plant Cell Physiol. 39: 458-461, 1998. Go to original source...