biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 48:561-567, 2004 | DOI: 10.1023/B:BIOP.0000047153.23537.26

Response to Chilling of Zea mays, Tripsacum dactyloides and their Hybrid

J.R. Jatimliansky1, M.D. García1,2, M.C. Molina1,2
1 Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Buenos Aires, Argentina
2 Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina

Maize (Zea mays ssp. mays) and eastern gamagrass (Tripsacum dactyloides) are known for their susceptibility to chilling injuries. Their hybrid (Z. mays × T. dactyloides) showed higher tolerance to low temperatures (-2 °C) in the field than its parents. Exposure to 5 °C for 2 or 3 d reduced the variable to maximal chlorophyll fluorescence ratio (FV/FM), an indicator of the maximum photochemical efficiency of the photosystem 2, and the variable to minimal fluorescence ratio (FV/F0) more in maize and eastern gamagrass than in hybrid plants. Chlorophyll contents for rewarming plants (25 °C for 3 d) were lower than before chilling in both parents while values for hybrid plants were similar. Electrolyte leakage was higher in chilled than control plants but it did not show significant differences among genotypes. Our data suggest that hybrid plants have higher capacity to recover from chilling injury in controlled conditions than their parents.

Keywords: maize; eastern gamagrass; chilling tolerance; chlorophyll fluorescence; intergeneric hybrid
Subjects: chilling tolerance, chlorophyll fluorescence; Eastern gamagrass; electrolyte leakage, chilling; fluorescence, chlorophyll, chilling; intergeneric hybrid, maize × gamagrass; maize, chlorophyll fluorescence; photochemical efficiency, chilling; photosystem 2, chlorophyll fluorescence; Tripsacum dactyloides; Zea mays

Published: December 1, 2004  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Jatimliansky, J.R., García, M.D., & Molina, M.C. (2004). Response to Chilling of Zea mays, Tripsacum dactyloides and their Hybrid. Biologia plantarum48(4), 561-567. doi: 10.1023/B:BIOP.0000047153.23537.26
Download citation

References

  1. Agati, G., Mazzinghi, P., Di Paola, M.L., Fusi, F., Cecchi, G.: The F685/F730 chlorophyll fluorescence ratio as indicator of chilling stress in plants.-J. Plant Physiol. 148: 384-390, 1996. Go to original source...
  2. Baker, N.R., East, T.M., Long S.P.: Chilling damage to photosynthesis in young Zea mays leaves.-J. exp. Bot. 139: 189-197, 1983. Go to original source...
  3. Bergquist, R.R.: Transfer from Tripsacum dactyloides to corn of a major gene locus conditioning resistance to Puccinia sorghi.-Phytopathology 71: 518-520, 1981. Go to original source...
  4. Bolhàr-Nordenkampf, H.R., Öquist, G.: Chlorophyll fluorescence as a tool in photosynthesis research.-In: Hall, D.O., Scorlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (ed.): Photosynthesis and Production in a Changing Environment: a Field and Laboratory Manual. Pp. 193-206. Chapman and Hall, London 1993. Go to original source...
  5. Brandolini, A., Landi, P., Monfredini, G., Tano, F.: Variation among Andean races of maize for cold tolerance during heterotrophic and early autotrophic growth.-Euphytica 111: 33-41, 2000. Go to original source...
  6. Butler, W.L., Kitajima, M.: Fluorescence quenching in photosystem II of chloroplasts.-Biochim. biophys. Acta 376: 116-125, 1975. Go to original source...
  7. Cooper, C.S., MacDonald, P.W.: Energetics of early seedling growth in corn (Zea mays L.).-Crop Sci. 10: 136-139, 1970. Go to original source...
  8. Csapó, B., Kovács, J., Páldi, E., Szigeti, Z.: Fluorescence induction characteristics of maize inbred lines after long-term chilling treatment during the early phase of development.-Photosynthetica 25: 575-582, 1991.
  9. Farage, P.K., Long, S.P.: Damage to maize photosynthesis in the field during periods when chilling is combined with high photon fluxes.-In: Biggins, J. (ed.): Progress in Photosynthesis Research. Pp. 139-142. Martinus Nijhoff, Dordrecht 1987. Go to original source...
  10. García, M.D., Molina, M.C., Caso, O.H.: [Maize plant regeneration from organogenic callus like a tool for genetic improvement.]-Rev. Fac. Agron. La Plata 68: 15-25, 1992. [In Span.]
  11. García, M.D., Molina, M.C., Pesqueira, J.: Genotype and embryo age affect plant regeneration from maize/tripsacum hybrids.-Maize Genet. Coop. Newslett. 74: 41-42, 2000.
  12. Gay, J.P. (ed.): Fabuleux Maïs.-A.G.P.M., Pau 1984.
  13. Genty, B., Briantais, J-M, Baker, N.R.: The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  14. Greer, D.H.: The combined effects of chilling and light stress on photoinhibition of photosynthesis and its subsequent recovery.-Plant Physiol. Biochem. 28: 447-455, 1990.
  15. Gutschick, V.P.: Optimization of specific leaf mass, internal CO2 concentration, and chlorophyll content in crop canopies.-Plant Physiol. Biochem. 26: 525-537, 1988.
  16. Haldimann, P., Fracheboud, Y., Stamp, P.: Photosynthetic performance and resistance to photoinhibition of Zea mays L. leaves grown at sub-optimal temperature.-Plant Cell Environ. 19: 85-92, 1996. Go to original source...
  17. Hardacre, A.K., Eagles, H.A.: Comparison among populations of maize for growth at 13 °C.-Crop Sci. 20: 780-784, 1980. Go to original source...
  18. Havaux, M., Lannoye, R.: Effects of chilling temperatures on prompt and delayed chlorophyll fluorescence in maize and barley leaves.-Photosynthetica 18: 117-127, 1984.
  19. Hodges, D.M., Hamilton, R.I., Charest, C.: A chilling response test for early growth phase maize.-Agron. J. 87: 970-974, 1995. Go to original source...
  20. Inskeep, W.P., Bloom, P.R.: Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80 % acetone.-Plant Physiol. 77: 483-485, 1985. Go to original source...
  21. James, J.: New maize uTripsacum hybrids for maize improvement.-Euphytica 28: 239-247, 1979. Go to original source...
  22. Kaniuga, Z., S±czyñska, V., Mi¶kiewicz, E., Garstka, M.: Degradation of leaf polar lipids during chilling and post-chilling rewarming of Zea mays genotypes reflects differences in their response to chilling stress. The role of galactolipase.-Acta Physiol. Plant. 21: 45-56, 1999. Go to original source...
  23. Kindiger, B., Bai, D., Sokolov, V.: Assignment of a gene(s) conferring apomixis in Tripsacum to a chromosome arm: cytological and molecular evidence.-Genome 39: 1133-1141, 1996b. Go to original source...
  24. Kindiger, B., Sokolov, V., Khatypova, J.V.: Evaluation of apomictic reproduction in a set of 39 chromosome maize-Tripsacum backcross hybrids.-Crop Sci. 36: 1108-1113, 1996a. Go to original source...
  25. Koscielniak, J., Biesaga-Koscielniak, J.: Effects of exposure to short periods of suboptimal temperature during chill (5 °C) on gas exchange and chlorophyll fluorescence in maize seedlings (Zea mays L.).-J. Agron. Crop Sci. 183: 231-241, 1999. Go to original source...
  26. Koscielniak, J., Biesaga-Koscielniak, J.: The effect of short warm breaks during chilling on water status, intensity of photosynthesis of maize seedlings and final grain yield.-J. Agron. Crop Sci. 184: 1-12, 2000. Go to original source...
  27. Leblanc, O., Grimanelli, D., González-de-León, D., Savidan Y.: Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers.-Theor. appl. Genet. 90: 1198-1203, 1995. Go to original source...
  28. Long, S.P., East, T.M., Baker, N.R.: Chilling damage to photosynthesis in young Zea mays. I. Effects of light and temperature variation on photosynthetic CO2 assimilation.-J. exp. Bot. 34: 177-188, 1983. Go to original source...
  29. Mangelsdorf, P.C.: The origin and evolution of maize.-Adv. Genet. 1: 161-267, 1947. Go to original source...
  30. Markowski, A., Skrudlik, G.: Electrolyte leakage, ATP content in leaves and intensity net photosynthesis in maize seedlings at permanent or different daily exposure to low temperatures.-J. Agron. Crop Sci. 175: 109-117, 1995. Go to original source...
  31. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence-a practical guide.-J. exp. Bot. 51: 659-668, 2000. Go to original source...
  32. McWilliam, J.R., Naylor, A.W.: Temperature and plant adaptation. I. Interaction of temperature and light in the synthesis of chlorophyll in corn.-Plant Physiol. 42: 1711-1715, 1967. Go to original source...
  33. Nie, G.Y., Long, S.P., Baker, N.R.: The effects of development at sub-optimal growth temperatures on photosynthetic capacity and susceptibility to chilling-dependent photoinhibition in Zea mays.-Physiol. Plant. 85: 554-560, 1992. Go to original source...
  34. Prasad, T.K.: Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings.-Plant Physiol. 114: 1369-1376, 1997. Go to original source...
  35. Ray, J.D., Kindiger, B., Sinclair, T.R.: Introgressing root aerenchyma into maize.-Maydica 44: 113-117, 1999.
  36. Roháèek, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relation-ships.-Photosynthetica 40: 13-29, 2002. Go to original source...
  37. Roháèek, K., Barták, M.: Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications.-Photosynthetica 37: 339-363, 1999. Go to original source...
  38. Stamp, P.: Seedling development of maize genotypes at constant and at fluctuating temperature.-J. Agron. Crop Sci. 158: 289-293, 1987. Go to original source...
  39. Steel, R.G.D., Torrie, J.H.: Principles and procedures of statistics. A biometrical approach.-McGraw-Hill Book Co, New York 1980.
  40. Szalai, G., Janda, T., Paldi, E., Szigeti, Z.: Role of light in the development of post-chilling symptons in maize.-J. Plant Physiol. 148: 378-383, 1996. Go to original source...
  41. Tian, X., Knapp, A.D., Moore, K.J., Brummer, E.C., Bailey, T.B.: Cupule removal and caryopsis scarification improves germination of eastern gamagrass.-Crop Sci. 42: 185-189, 2002. Go to original source...
  42. Travert, S., Valerio, L., Fourasté, I., Boudet, A.M., Teulières, C.: Enrichment in specific soluble sugars of two Eucalyptus cell-suspension cultures by various treatments enhances their frost tolerance via a non colligative mechanism.-Plant Physiol. 114: 1433-1442, 1997. Go to original source...