biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 49:65-71, 2005 | DOI: 10.1007/s10535-005-5071-6

Development of freezing tolerance in different altitudinal ecotypes of Salix paraplesia

C. Li1,*, N. Wu2, S. Liu3
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P.R. China
2 Department of Biosciences, University of Helsinki, Helsinki, Finland
3 Institute of Forest Ecology and Environment, Chinese Academy of Forestry, Beijing, P.R. China

Salix paraplesia was used as an experimental model to investigate the effect of short day photoperiod (SD) and low temperature (LT) on development of freezing tolerance and on endogenous abscisic acid (ABA) contents. We characterized differences in SD and LT-induced cold acclimation in three ecotypes from different altitudes. The results demonstrated that cold acclimation could be triggered by exposing the plants to SD or LT alone, and that a combination of the different treatments had an additive effect on freezing tolerance in all ecotypes studied. However, the high altitudinal ecotype was more responsive to SD and LT than the low altitudinal ecotype. Development of freezing tolerance induced by SD and LT was accompanied by changes in ABA contents which were ecotype-dependent. Although the stem had higher initial freezing tolerance, the leaves developed freezing tolerance more quickly than the stem and thus leaves may provide an interesting experimental system for physiological and molecular studies of cold acclimation in woody plants.

Keywords: abscisic acid; cold acclimation; low temperature; short-day photoperiod
Subjects: abscisic acid (ABA); ecotypes, altitudinal, freezing; freezing, frost tolerance; growth analysis, plant development, biomass and yield enhancement; photon flux density; photoperiod, short-day; Salix paraplesia; short-day plant, cold acclimation; temperature, low, altitudinal ecotype; willow, altitudinal ecotypes

Received: September 2, 2003; Accepted: April 22, 2004; Published: March 1, 2005  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Li, C., Wu, N., & Liu, S. (2005). Development of freezing tolerance in different altitudinal ecotypes of Salix paraplesia. Biologia plantarum49(1), 65-71. doi: 10.1007/s10535-005-5071-6
Download citation

References

  1. Arora, R., Wisniewski, M., Rowland, L.J.: Cold acclimation and alterations in dehydrin-like and bark storage proteins in the leaves of sibling deciduous and evergreen peach.-J. amer. Soc. hort. Sci. 121: 915-919, 1996. Go to original source...
  2. Arora, R., Wisniewski, M.E., Scorza, R.: Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). I. Seasonal changes in cold hardiness and polypeptides of bark and xylem tussues.-Plant Physiol. 99: 1562-1568, 1992. Go to original source...
  3. Atici, Ö., Demir, Y., Kocaçaliºkan, İ.: Effects of low temperature on winter wheat and cabbage leaves.-Biol. Plant. 46: 603-606, 2003. Go to original source...
  4. Baldwin, B.D., Bandara, M.S., Tanino, K.K.: Is tissue culture a viable system with which to examine environmental and hormonal regulation of cold acclimation in woody plants?-Physiol. Plant. 102: 201-209, 1998. Go to original source...
  5. Browse, J., Xin, Z.G.: Temperature sensing and cold acclimation.-Curr. Opin. Plant Biol. 4: 241-246, 2001. Go to original source...
  6. Chen, H.H., Li, P.H., Brenner, M.L.: Involvement of abscisic acid in potato cold acclimation.-Plant Physiol. 71: 362-365, 1983. Go to original source...
  7. Daie, J., Campbell, W.F.: Response of tomato plants to stressful temperatures.-Plant Physiol. 67: 26-29, 1981. Go to original source...
  8. Davies, W.J., Jones, H.G.: Abscisic Acid: Physiology and Biochemistry.-BIOS Scientific Publ., Oxford 1991. Go to original source...
  9. Faltusová-Kadlecová, Z., Faltus, M., Prá¹il, I.: Comparison of barley responses to short-term cold or dehydration.-Biol. Plant. 45: 637-639, 2002. Go to original source...
  10. Fuchigami, L.H., Weiser, C.J., Evert, D.R.: Induction of cold acclimation in Cornus stolonifera Michx.-Plant Physiol. 47: 98-103, 1971. Go to original source...
  11. Giraudat J., Parcy, F., Bertauche, N., Gosti, F., Leung, J., Morris, P.C., Bouvier-Durand, M., Vartanian, N.: Current advances in abscisic acid action and signalling.-Plant mol. Biol. 26: 1557-1577, 1994. Go to original source...
  12. Guy, C.L., Haskell, D.: Detection of polypeptides associated with the cold acclimation process in spinach.-Electrophoresis 9: 787-796, 1988. Go to original source...
  13. Irving, R.M., Lanphear, F.O.: Environmental control of cold hardiness in woody plants.-Plant Physiol. 42: 1191-1196, 1967. Go to original source...
  14. Jensen, E., Rivier, L., Junttila, O.: Abscisic acid and cessation of apical growth in Salix pentandra.-Physiol. Plant. 66: 409-412, 1986. Go to original source...
  15. Junttila, O., Kaurin, Å.: Environmental control of cold acclimation in Salix pentandra.-Scand. J. Forest Res. 5: 195-204, 1990. Go to original source...
  16. Lalk, I., Dörffling, K.: Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties.-Physiol. Plant. 63: 287-292, 1985. Go to original source...
  17. Lång, V., Heino, P., Palva, E.T.: Low temperature acclimation and treatment with exogenous abscisic acid induce common polypeptides in Arabidopsis thaliana (L.) Heynh.-Theor. appl. Genet. 77: 729-734, 1989. Go to original source...
  18. Lång, V., Mäntylä, E., Welin, B., Sundberg, B., Palva, E.T.: Alteration of water status, endogenous abscisic acid content, and expression of the rab18 gene during the development of freezing tolerance in Arabidopsis thaliana.-Plant Physiol. 104: 1341-1349, 1994. Go to original source...
  19. Lee, H., Xiong, L.M., Ishitani, M., Stevenson, B., Zhu, J.K.: Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant.-Plant J. 17: 301-308, 1999. Go to original source...
  20. Li, C., Junttila, O., Heino, P., Palva, E.T.: Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application.-Tree Physiol. 23: 481-487, 2003. Go to original source...
  21. Li, C., Puhakainen, T., Welling, A., Viherä-Aarnio, A., Ernstsen, A., Junttila, O., Heino, P., Palva, E.T.: Cold acclimation in silver birch (Betula pendula). Development of freezing tolerance in different tissues and climatic ecotypes.-Physiol. Plant. 116: 478-488, 2002. Go to original source...
  22. Mäntylä, E., Lång, V., Palva, E.P.: Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LTI78 and RAB18 proteins in Arabidopsis thaliana.-Plant Physiol. 107: 141-148, 1995. Go to original source...
  23. Nuotio, S., Heino, P., Palva, E.P.: Signal transduction under low-temperature stress.-In: Basra, A.S. (ed.): Crop Responses and Adaptations to Temperature Stress. Pp. 151-175. Food Products Press, New York 2001. Go to original source...
  24. Olsen, J.E., Junttila, O., Nilsen, J., Eriksson, M.E., Martinussen, I., Olsson, O., Sandberg G., Moritz, T.: Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization.-Plant J. 12: 1339-1350, 1997. Go to original source...
  25. Palva, E.T.: Gene expression under low temperature stress.-In: Basra, A.S. (ed.): Stress Induced Gene Expression in Plants. Pp. 103-130. Harwood Academic Publ., Chur 1994.
  26. Palva, E.T., Heino, P.: Molecular mechanism of plant cold acclimation and freezing tolerance.-In: Li, P.H., Chen, T.H.H. (ed.): Plant Cold Hardiness. Pp. 3-14. Plenum Press, New York 1998. Go to original source...
  27. Pan, R.C.: The role of abscisic acid in chilling resistance.-In: Pharis, R.T., Rood, S.B. (ed.): Plant Growth Substances. Pp. 391-399. Springer-Verlag, Berlin 1990. Go to original source...
  28. Pinedo, M.L., Hernandez, G.F., Conde, R.D., Tognetti, J.A.: Effect of low temperature on the protein metabolism of wheat leaves.-Biol. Plant. 43: 363-367, 2000. Go to original source...
  29. Qamaruddin, M., Dormling, I., Ekberg, I., Eriksson, G., Tillerg, E.: Abscisic acid content at defined levels of bud dormancy and frost tolerance in two contrasting populations of Picea abies grown in a phytotron.-Physiol. Plant. 87: 203-210, 1993. Go to original source...
  30. Repo, T., Zhang, G., Ryyppö, A., Rikala, R., Vuorinen, M.: The relation between growth cessation and frost hardening in Scots pines of different origins.-Trees 14: 456-464, 2000. Go to original source...
  31. Rinne, P.L.H., Kaikuranta, P.L.M., Van der Plas, L.H.W., van der Schoot, C.: Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration.-Planta 209: 377-388, 1999. Go to original source...
  32. Rinne, P.L.H., Kaikuranta, P.M., Van der Schoot, C.: The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy.-Plant J. 26: 249-264, 2001. Go to original source...
  33. Rock, C.D.: Pathways to abscisic acid-regulated gene expression.-New Phytol. 148: 357-396, 2000. Go to original source...
  34. Skriver, K., Mundy, J.: Gene expression in response to abscisic acid and osmotic stress.-Plant Cell 2: 503-512, 1990. Go to original source...
  35. Stushnhoff, C., Junttila, O.: Seasonal development of cold stress resistance in several plant species at a coastal and a continental location in North Norway.-Polar Biol. 5: 129-133, 1986. Go to original source...
  36. Sukumaran, N.P., Weiser, C.J.: An excised leaflet test for evaluation potato frost tolerance.-HortScience 7: 467-468, 1972. Go to original source...
  37. Szalai, G., Tari, I., Janda, T., Pestenacz, A., Paldi, E.: Effect of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling.-Biol. Plant. 43: 637-640, 2000. Go to original source...
  38. Tamminen, I., Makela, P., Heino, P., Palva, E.T.: Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana.-Plant J. 25: 1-8, 2001. Go to original source...
  39. Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571-599, 1999. Go to original source...
  40. Weiser, C.J.: Cold resistance and injury in woody plants.-Science 169: 1269-1278, 1970. Go to original source...
  41. Welling, A., Kaikuranta, P., Rinne, P.: Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins.-Physiol. Plant. 100: 119-125, 1997. Go to original source...
  42. Welling, A., Moritz, T., Palva, E.T., Junttila, O.: Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen.-Plant Physiol. 129: 1633-1641, 2002. Go to original source...
  43. Xin, Z., Browse, J.: Cold comfort farm: the acclimation of plants to freezing temperatures.-Plant Cell Environ. 23: 893-902, 2000. Go to original source...
  44. Zhu, J.K.: Salt and drought stress signal transduction in plants.-Annu. Rev. Plant Biol. 53: 247-273, 2002. Go to original source...