biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 49:467-470, 2005 | DOI: 10.1007/s10535-005-0031-8

Effects of elevated CO2 and nitrogen on wheat growth and photosynthesis

M. Pal1,*, L. S. Rao1, V. Jain1, A. C. Srivastava1, R. Pandey1, A. Raj1, K. P. Singh1
1 Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India

The effects of nitrogen [75 and 150 kg (N) ha-1] and elevated CO2 on growth, photosynthetic rate, contents of soluble leaf proteins and activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and nitrate reductase (NR) were studied on wheat (Triticum aestivum L. cv. HD-2285) grown in open top chambers under either ambient (AC) or elevated (EC) CO2 concentration (350 ± 50, 600 ± 50 μmol mol-1) and analyzed at 40, 60 and 90 d after sowing. Plants grown under EC showed greater photosynthetic rate and were taller and attained greater leaf area along with higher total plant dry mass at all growth stages than those grown under AC. Total soluble and Rubisco protein contents decreased under EC but the activation of Rubisco was higher at EC with higher N supply. Nitrogen increased the NR activity whereas EC reduced it. Thus, EC causes increased growth and PN ability per unit uptake of N in wheat plants, even if N is limiting.

Keywords: nitrate reductase; protein content; Rubisco; specific leaf area; Triticum aestivum
Subjects: CO2 enrichment, growth, photosynthesis; gas exchange, CO2 enrichment; growth analysis, plant development, biomass and yield enhancement; growth, elevated CO2, photosynthesis; nitrate reductase; nitrogen, growth, elevated CO2; open top chamber (OTC); protein, content, nitrogen, growth; ribulose-1,5-bisphosphate carboxylase/oxygenase; root, elevated CO2, photosynthesis; Triticum aestivum; wheat, growth, elevated CO2

Received: September 27, 2004; Accepted: February 2, 2005; Published: September 1, 2005  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pal, M., Rao, L.S., Jain, V., Srivastava, A.C., Pandey, R., Raj, A., & Singh, K.P. (2005). Effects of elevated CO2 and nitrogen on wheat growth and photosynthesis. Biologia plantarum49(3), 467-470. doi: 10.1007/s10535-005-0031-8
Download citation

References

  1. Aben, S.K., Ghannown, O., Conroy, J.P.: Nitrogen requirements for maximum growth and photosynthesis of rice Oryza sativa L. cv. Jarrah grown at 36 and 70 Pa CO2.-Aust. J. Plant Physiol. 26: 759-766, 1999. Go to original source...
  2. Bazzaz, F.A.: The response of natural ecosystems to the rising CO2 levels.-Annu. Rev. Ecol. Syst. 21: 167-96, 1990. Go to original source...
  3. Bradford, M.M.: A rapid and sensitive method for quantification of protein utilizing the principal of protein dye binding.-Anal. Biochem. 72: 248-254, 1976. Go to original source...
  4. Cruz, J.L., Mosquim, P.R., Pelacani, C.R., Araujo, W.L., DaMatta, F.M.: Effects of nitrate nutrition on nitrogen metabolism in cassava.-Biol. Plant. 48: 67-72, 2004. Go to original source...
  5. Das, R.: Characterization of response of Brassica cultivars to elevated carbon dioxide under moisture stress.-Ph. D. Thesis. Indian Agricultural Research Institute, New Delhi 2003.
  6. Ferrario-Mery, S., Thibaud, M.C., Betsche, T., Valadier, M.H. Foyer, C.H.: Modulation of carbon and nitrogen metabolism and of nitrate reductase, in untransformed Nicotiana plumbaginifolia during CO2 enrichment of plants grown in pots and hydroponic culture.-Planta 202: 510-521, 1997. Go to original source...
  7. Gardner, F.P., Pearce, R.B., Mitchell, R.L.: Physiology of Crop Plants.-The Iowa State University Press, Ames 1985.
  8. Geiger, M., Walch-Piu, L., Harnecker, J., Schulze, E.D., Ludewig, F., Sonnewald, U., Scheible, W.R., Stitt, M.: Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants and a large stimulation of nitrate reductase activity and higher levels of amino acids in higher plants.-Plant Cell Environ. 21: 253-268, 1998. Go to original source...
  9. Houghton, J.T., Miera Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A. K., Maskell, K. (ed.): Climate Change 1995: The Science of Climate Change.-Cambridge University Press, Cambridge 1996.
  10. Makino, A., Mae, T., Ohira, K.: Colorimetric measurement of protein stained with Coomassie Brillient Blue R on sodium dodecyl sulfate polyacrylamide gel electrophoresis by eluting with formamide.-Agr. biol. Chem. 50: 1911-1912, 1986. Go to original source...
  11. Makino, A., Nakano, H., Mae, T., Shimada, T., Yamamoto, N.: Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO2 enrichment.-J. exp. Bot. 51: 383-389, 2000. Go to original source...
  12. Moynul Haque, M., Hamid, A., Khanam, M., Biswas, D.K., Karim, M.A., Khaliq, Q.A., Hossain, M.A., Uprety, D.C.: Elevated CO2 effect on leaf chlorophyll and nitrogen contents in rice during post-flowering phases.-Biol. Plant. 49: in press, 2005.
  13. Nair, T.V.R., Abrol, Y.P.: Nitrate reductase activity in developing wheat ears.-Experientia 29: 480-481, 1973. Go to original source...
  14. Pal, M., Kartikeyapandian, V., Jain, V., Srivastava, A.C., Raj, A., Sengupta, U.K.: Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO2.-Agr. Ecosyst. Environ. 101: 31-38, 2004. Go to original source...
  15. Pal, M., Rao, L.S., Srivastava, A.C., Jain, V., Sengupta, U.K.: Impact of CO2 enrichment and variable nitrogen supplies on composition and partitioning of essential nutrients of wheat.-Biol. Plant. 47: 227-231, 2003. Go to original source...
  16. Panse, V.G., Sukhatme, P.T. (ed.): Statistical Methods for Agricultural Workers.-Indian Council of Agricultural Research, New Delhi 1967.
  17. Rogers, G.S., Milham, P.J., Gillings, M., Conroy, J.P.: Sink strength may be the key to growth and nitrogen responses in N-deficient wheat at elevated CO2.-Aust. J. Plant Physiol. 23: 253-264, 1996. Go to original source...
  18. Rogers, H.H., Heck, W.W., Heagle, A.S.: A field technique for the study of plant responses to elevated CO2 concentration.-Air Pollut. Control Assoc. J. 33: 42-44, 1983. Go to original source...
  19. Sage, R.F., Sharkey, T.D., Seeman, J.R.: The in vivo response of the ribulose-1,5-bisphosphate carboxylase activation state and the pool sizes of photosynthetic metabolites to elevated CO2 in Phaseolus vulgaris L.-Planta 174: 407-416, 1988. Go to original source...
  20. Servaites, J.C., Torisky, R.S., Chao, S.E.: Diurnal changes in ribulose-1,5-biphosphate carboxylase activity and activation state in leaves of field grown soybeans.-Plant Sci. Lett. 35: 115-121, 1984. Go to original source...
  21. Uprety, D.C., Mahalaxmi, V.: Effect of elevated CO2 and nitrogen nutrition on photosynthesis, growth and carbonnitrogen balance in Brassica juncea.-J. Agron. Crop Sci. 184: 271-276, 2000. Go to original source...
  22. Ziska, L.H., Weerakoon, W., Namuco, O.S., Pamplona, R.: The influence of nitrogen on the elevated carbon dioxide response in field grown rice.-Aust. J. Plant Physiol. 23: 45-52, 1996. Go to original source...