biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 50:239-244, 2006 | DOI: 10.1007/s10535-006-0013-5

Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid

G. Drazic1,*, N. Mihailovic1, M. Lojic1
1 Institute for the Application of Nuclear Energy, Zemun, Serbia and Montenegro

Growth parameters and cadmium accumulation were investigated in alfalfa seedlings treated with 10 μM salicylic acid (SA) at the beginning of seed imbibition. Shoot and root growths were accelerated by SA treatment and suppressed by Cd both in presence and absence of SA. Cd accumulation was stimulated by SA in alfalfa seedlings in dependence of the treatment duration. K, Mg, Ca and Fe contents in roots are decreased in the presence of Cd alone, while SA induces a decrease of Mg, Ca and Fe. Shoot K, Mg and Ca concentrations are increased by Cd only in the absence of SA, while SA induces also an increase of these concentrations, but only in the absence of Cd. High negative correlation of Cd concentration with K and Ca concentrations in root indicates a competition for the same carrier not regulated by SA. Positive correlation between Cd and Mg concentrations in shoots, which is decreased by SA pre-treatment, together with the increase of positive correlation between Cd and Fe concentrations in shoots under the influence of SA, indicates a possible mechanism of SA action through maintenance of ionic homeostasis.

Keywords: alfalfa; growth parameters; mineral nutrients; root; shoot
Subjects: alfalfa; cadmium; calcium; growth analysis, plant development, biomass and yield enhancement; heavy metals; in vitro culture, callus growth and duration; iron; magnesium; Medicago sativa; potassium; salicylic acid

Received: May 21, 2004; Accepted: June 17, 2005; Published: June 1, 2006  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Drazic, G., Mihailovic, N., & Lojic, M. (2006). Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biologia plantarum50(2), 239-244. doi: 10.1007/s10535-006-0013-5
Download citation

References

  1. Alvarez, M.: Salicylic acid in the machinery of hypersensitive cell death and disease resistance.-Plant mol. Biol. 44: 429-442, 2000. Go to original source...
  2. Astolfi, S., Zuchi, S., Passera, C.: Effects of cadmium on the metabolic activity of Avena sativa plants grown in soil or hydroponic culture.-Biol. Plant. 48: 413-418, 2004. Go to original source...
  3. Barkosky, R., Einhellig, F.: Effects of salicylic acid on plant water relationship.-J. chem. Ecol. 19: 237-247, 1993. Go to original source...
  4. Bartels, D.: Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance?-Trends Plant Sci. 6: 284-286, 2001. Go to original source...
  5. Borsani, O., Valpuesta, V., Botella, M.: Evidence for role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings.-Plant Physiol. 126: 1024-1030, 2001. Go to original source...
  6. Ding, C.-K., Wang, C.: The dual effects of methyl salicylate on ripening and expression of ethylene biosynthetic genes in tomato fruit.-Plant Sci. 164: 589-596, 2003. Go to original source...
  7. Drazic, G., Mihailovic, N.: Modification of cadmium toxicity in soybean seedlings by salicylic acid.-Plant Sci., in press, 2005. Go to original source...
  8. Drazic, G., Mihailovic. N., Stojanovic, Z.: Cadmium toxicity: the effect on macro-and micronutrients contents in soybean seedlings.-Biol. Plant. 48: 605-507, 2004. Go to original source...
  9. Hall, J.: Cellular mechanisms for heavy metal detoxification and tolerance.-J. exp. Bot. 53: 1-11, 2002. Go to original source...
  10. Hall, J., Williams, E.: Transition metal transporters in plants.-J. exp. Bot. 54: 2601-2613, 2003. Go to original source...
  11. Hegedus, A., Erdei, S., Janda, T., Toth, E., Horvath, G., Dudits, D.: Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress.-Plant Sci. 166: 1329-1333, 2004. Go to original source...
  12. Kang, H.-M., Saltveit, M.: Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid.-Physiol. Plant. 115: 571-576, 2002. Go to original source...
  13. Kevresan, S., Kirsek, S., Kandrac, J., Petrovic, N., Keleman, Dj.: Dynamics of cadmium distribution in the intercellular space and inside cells in soybean roots, stems and leaves.-Biol. Plant. 46: 85-88, 2003. Go to original source...
  14. Kim, Y., Yang, Y., Lee, Y.: Pb and Cd uptake in rice roots.-Physiol. Plant. 116: 368-372, 2002. Go to original source...
  15. Liu, D., Jiang, W., Gao, X.: Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic.-Biol. Plant. 47: 79-83, 2003/4. Go to original source...
  16. Liu, J., Liang, J., Li, K., Zhang, Z., Yu, Y., Lu, X., Yang, J., Zhu, Q.: Correlations between cadmium and mineral nutrients an absorption and accumulation in various genotypes of rice under cadmium stress.-Chemosphere 52: 1467-1473, 2003. Go to original source...
  17. Lunackova, L., Sottnikova, A., Masarovicova, E., Lux, A., Stresko, V.: Comparison of cadmium effect on willow and poplar in response to different cultivation conditions.-Biol. Plant. 47: 403-411, 2003/4. Go to original source...
  18. Mazen, A.: Accumulation of four metals in tissues of Corchorus olitorius and possible mechanisms of their tolerance.-Biol. Plant. 48: 267-272, 2004. Go to original source...
  19. Metraux, J., Singer, H., Rials, J., Ward, E., Wyss-Benz, J., Gaudin, J., Raschdorf, K., Shmid, E., Blum, W., Inverardi, B.: Increase in salisylic acid at the onset of systemic acquired resistance in cucumber.-Science 250: 1004-1006, 1990. Go to original source...
  20. Metwally, A., Finkemeier, I., Georgi, M., Dietz, K.-J.: Salicylic acid alleviates the cadmuim toxicty in barley seedlings.-Plant Physiol. 132: 272-281, 2003. Go to original source...
  21. Mishra, A., Choudhuri, M.: Effects of salicylic acid on heavy metal-induced membrane degradation mediated by lipoxygenase in rice.-Biol. Plant. 42: 409-415, 1999. Go to original source...
  22. Nigam, R., Srivastava, S., Prakash, S., Srivastava, M.: Cadmium mobilisation and plant availability - the impact of organic acids commonly exuded from roots.-Plant Soil 230: 107-113, 2001. Go to original source...
  23. Oberschall, A., Deak, K., Torok, L., Sass, L., Vass, I., Kovach, I., Feher, A., Horvath, G.: A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stress.-Plant J. 24: 437-446, 2000. Go to original source...
  24. Raskin, I.: Role of salicylic acid in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 439-463, 1992. Go to original source...
  25. Rauser, W.: Phytochelatins and related peptides.-Plant Physiol. 109: 1141-1149, 1995. Go to original source...
  26. Romheld, B., Marchner, H.: Effect of Fe stress on utilization of Fe chelates by efficient and inefficient plant stress.-J. Plant Nutr. 3: 555-560, 1981. Go to original source...
  27. Sanita di Toppi, L., Gabbrielli, R.: Response to cadmium in higher plants.-Environ. exp. Bot. 41: 105-130, 1999. Go to original source...
  28. Sharikova, F., Sakhabutdinova, A., Bezrukova, M. Fatkhutdinova, R. Fatkhudinova, D.: Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity.-Plant Sci. 164: 317-322, 2003 Go to original source...
  29. Skorzynska-Polit, E., Drazkiewicz, M., Krupa, Z.: The activity of the antioxidative system in cadmium-treated Arabidopsis thaliana.-Biol. Plant. 47: 71-78, 2003/4. Go to original source...
  30. Sottnikova, A., Lunackova, L., Masarovicova, E., Lux, A., Stresko, V.: Changes in the rooting and growth of willows and poplars induced by cadmium.-Biol. Plant. 46: 129-131, 2003. Go to original source...
  31. Szalai, G., Tari, I., Janda, T., Pestenacz, A., Paldi, E.: Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling.-Biol. Plant. 43: 637-640, 2000. Go to original source...
  32. Tissa, S., Darren, T., Eric, B., Kinsley D.: Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants.-Plant Growth Regul. 30: 157-161, 2000.
  33. Vassilev, A., Lidon, F., Scotti, P., Da Graca, M, Yordanov, I.: Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants.-Biol. Plant. 48: 153-156, 2004. Go to original source...