biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 50:461-464, 2006 | DOI: 10.1007/s10535-006-0071-8

Phenolics, lignin content and peroxidase activity in Picea omorika lines

J. Bogdanovic1, D. Dikanovic1, V. Maksimovic1, S. Tufegdzic2, D. Dokovic3, V. Isajev4, K. Radotic1,*
1 Centre for Multidisciplinary Studies, University of Belgrade, Belgrade, Serbia
2 Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia
3 Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
4 Faculty of Forestry, University of Belgrade, Belgrade, Serbia

We analyzed low molecular mass phenolics, lignin content and both soluble and cell wall bound peroxidase activity in the needles of three Picea omorika (Pancic) Purkyne lines grown in the generative seed orchard. The highest values of the total phenol content as well as of catechine, caffeic acid, coniferyl alcohol, isoferulic acid and lignin concentration were detected in B5 line ("semidichotomy" line). The soluble guaiacol peroxidase activity was the highest in A3 line (line "borealis"). The highest activity of cell wall bound peroxidases was measured in B5 line, and it was in correlation with lignin content.

Keywords: guaiacol peroxidase; omorika; pollution stress
Subjects: guaiacol peroxidase; lignification, lignin; peroxidase; phenolics; Picea omorica; pollution stress

Received: November 5, 2004; Accepted: March 10, 2005; Published: September 1, 2006  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Bogdanovic, J., Dikanovic, D., Maksimovic, V., Tufegdzic, S., Dokovic, D., Isajev, V., & Radotic, K. (2006). Phenolics, lignin content and peroxidase activity in Picea omorika lines. Biologia plantarum50(3), 461-464. doi: 10.1007/s10535-006-0071-8
Download citation

References

  1. Bernardi, R., Nali, C., Ginestri, P., Pugliesi, C., Lorenzini, G., Durante, M.: Antioxidant enzyme isoforms on gels in two poplar clones differing in sensitivity after exposure to ozone.-Biol. Plant. 48: 41-48, 2004. Go to original source...
  2. Bisbis, B., Kevers, C., Crevecoeur, M., Dommes, J., Gaspar, T.: Restart of lignification in micropropagated walnut shoots coincides with rooting induction.-Biol. Plant. 47: 1-5, 2003/4. Go to original source...
  3. Brignolas, F., Lieutier, F., Sauvard, D., Yart, A., Drouet, A., Claudot, A.C.: Changes in soluble phenol content of Norway spruce (Picea abies) phloem in response to wounding and inoculation with Ophiostoma polonicum.-Eur. J. Forest Pathol. 25: 253-265, 1995. Go to original source...
  4. Bunzel, M., Ralph, J., Funk, C., Steinhart, H.: Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber.-Eur. Food Res. Technol. 217: 128-133, 2003. Go to original source...
  5. Castillo, F.J.: Extracellular peroxidases as markers of stress?-In: Grepin, H., Penel, C., Gaspar T. (ed.): Molecular and Physiological Aspects of Plant Peroxidases. Pp. 419-426. University of Geneva, Geneva 1986.
  6. Chen, M., Sommer, A.J., McClure, J.W.: Fourier transform-IR determination of protein contamination in thioglycolic acid lignin from radish seedlings, and improved methods for extractive-free cell wall preparation.-Phytochem. Anal. 11: 153-159, 2000. Go to original source...
  7. Dean, J.F.D.: Lignin analysis.-In: Dashek, W.V. (ed.): Plant Biochemistry/Molecular Biology Laboratory Manual. Pp. 199-215. CRC Press, Boca Raton 1997.
  8. Fry, S.C.: Feruloylated pectins from the primary cell wall: their structure and possible functions.-Planta 157: 111-123, 1983. Go to original source...
  9. Giertych, M.J., Karolewski, P.: Changes in phenolic compounds content in needles of Scots pine (Pinus sylvestris L.) seedlings following short-term exposition to sulphur dioxide.-Arbor. kornickie 38. 43-51, 1993.
  10. Graf, E.: Antioxidative potential of ferulic acid.-Free Radical Biol. Med. 13. 435-448, 1992. Go to original source...
  11. Hartling, S., Schulz, H.: Biochemical parameters as biomarkers for the early recognition of environmental pollution in Scots pine trees. I. Phenolic compounds.-Z. Naturforsch. 53c: 331-340, 1998. Go to original source...
  12. Hatfield, R.D., Ralph, J., Grabber, J.H.: Cell wall cross-linking by ferulates and diferulates in grasses.-J. Sci. Food Agr. 79: 403-407, 1999. Go to original source...
  13. Heller, W., Roseman, D., Osswald, W.F., Benz, B., Schonwitz R., Lohwasser, K., Kloos, M., Sandermann, H.: Biochemical response of Norway spruce (Picea abies (L.) Karst.) towards 14-month exposure to ozone and acid mist: - effects on polyphenol and monoterpene metabolism.-Environ. Pollut. 64: 353-366, 1990. Go to original source...
  14. Iiyama, K., Lam, T.B., Stone, B.A.: Covalent cross links in the cell wall.-Plant Physiol. 104: 315-320, 1994. Go to original source...
  15. Karolewski, P., Giertych, M.J.: Changes in the level of phenols during needle development in Scots pine populations in a control and polluted environment.-Eur. J. Forest Pathol. 25: 297-306, 1995. Go to original source...
  16. Kahkonen, M.P., Hopia, A.I., Vuorela, H.J., Rauha, J.-P., Pihlaja, K., Kujala, T.S., Heinonen, M.: Antioxidant activity of plant extracts containing phenolic compounds.-J. Agr. Food Chem. 47: 3954-3962, 1999. Go to original source...
  17. Kral, D.: Assessing the growth of Picea omorika [Panc.] Purkyne in the Masaryk forest training forest enterprise at Krtiny.-J. Forest Sci. 48: 388-398, 2002. Go to original source...
  18. Lam, T.B.T., Iliyama, K., Stone, B.A.: Cinnamic acid bridges between cell wall polymers in wheat and phalaris internodes.-Phytochemistry 31: 1179-1183, 1992. Go to original source...
  19. Lewis, N.G., Yamamoto, E.: Lignin: occurrence, biogenesis and biodegradation.-Annu. Rev. Plant Physiol. Plant. mol. Biol. 41: 455-496, 1990. Go to original source...
  20. McDougal, G.J.: Cell wall-associated peroxidases and lignification during growth of flax fibres.-J. Plant Physiol. 139: 182-186, 1991. Go to original source...
  21. McDougal, G.J.: Changes in cell wall-associated peroxidases during the lignification of flax fibres.-Phytochemistry 31: 3385-3389, 1992. Go to original source...
  22. Morrison, I.M.: A semi-micro method for the determination of lignin and its use in predicting the digestibility of forage crops.-Sci. Food Agr. 23: 455-463, 1972. Go to original source...
  23. Otter, T., Polle, A.: The influence of apoplastic ascorbate on the activities of cell-wall associated peroxidase and NADH oxidase in needles of Norway spruce (Picea abies L.).-Plant Cell Physiol. 35: 1231-1238, 1994. Go to original source...
  24. Polle, A., Otter, T., Seifert, F.: Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.).-Plant Physiol. 106: 53-60, 1994. Go to original source...
  25. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents.-Amer. J. Enol. Viticult. 16: 144-158, 1965. Go to original source...
  26. Strack, D., Heilemann, J., Wray, V., Dirks, H.: Structures and accumulation patterns of soluble and insoluble phenolics from Norway spruce needles.-Phytochemistry 28: 2071-2078, 1988. Go to original source...
  27. Takahama, U., Oniki, T.: Effects of ascorbate on the oxidation of derivatives of hydroxycinnamic acid and the mechanism of oxidation of sinapic acid by cell wall-bound peroxidases.-Plant Cell Physiol. 35: 593-600, 1994. Go to original source...