biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 50:617-623, 2006 | DOI: 10.1007/s10535-006-0097-y

Short-term effect of elevated CO2 concentration and high irradiance on the antioxidant enzymes in bean plants

M. Lambreva1,*, K. Christov1, T. Tsonev1
1 Acad. M. Popov Institute of Plant Physiology, Bulgarian Academy of Sciences, Sofia, Bulgaria

The effect of short-term exposure to elevated CO2 concentration and high irradiance on the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT), and on the extent of the lipid peroxidation was studied in bean (Phaseolus vulgaris L.) plants. Plants were exposed for 4 d (8 h a day) to irradiance of 100 (LI) or 1000 (HI) μmol m-2 s-1 at ambient (CA, 350 μmol mol-1) or elevated (CE, 1300 μmol mol-1) CO2 concentration. Four-day exposure to CE increased the leaf dry mass in HI plants and RuBPC activity and chlorophyll content in LI plants. Total soluble protein content, leaf dry matter and RuBPC activity were higher in HI than in LI plants, although the HI and CE increased the contents of malonyldialdehyde and H2O2. Under CA, exposure to HI increased the activity of APX and decreased the total SOD activity. Under CE, HI treatment also activated APX and led to reduction of both, SOD and GPX, enzymes activities. CE considerably reduced the CAT activity at both irradiances, possibly due to suppressed rate of photorespiration under CE conditions.

Keywords: ascorbate peroxidase; catalase; guaiacol peroxidase; lipid peroxidation; Phaseolus vulgaris; RuBPC; superoxide dismutase
Subjects: antioxidants, antioxidative enzymes; ascorbate peroxidase; catalase; CO2 concentration, elevated, enrichment; guaiacol peroxidase; lipid peroxidase, lipid peroxidation; malonyldialdehyde; Phaseolus vulgaris; (photosynthetic) photon flux density; photosystem 2; ribulose-1,5-bisphosphate carboxylase/oxygenase; superoxide dismutase (SOD)

Received: November 30, 2004; Accepted: May 31, 2005; Published: December 1, 2006  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Lambreva, M., Christov, K., & Tsonev, T. (2006). Short-term effect of elevated CO2 concentration and high irradiance on the antioxidant enzymes in bean plants. Biologia plantarum50(4), 617-623. doi: 10.1007/s10535-006-0097-y
Download citation

References

  1. Aeby, H.: Catalase in vitro.-Methods Enzymol. 105: 121-126, 1984. Go to original source...
  2. Alexieva, V., Sergiev, I., Mapelli, S., Karanov, E.: The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat.-Plant Cell Environ. 24: 1337-1344, 2001. Go to original source...
  3. Amako, K., Cheng, G., Asada, K.: Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isoenzymes of ascorbate peroxidase in plants.-Plant Cell Physiol. 35: 497-504, 1994.
  4. Asada, K.: The water-water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601-639, 1999. Go to original source...
  5. Asada, K., Takahashi, M.: Production and scavenging of active oxygen in photosynthesis.-In: Kyle, D.J., Osmond, C.B., Arntzen, C.J. (ed.): Photoinhibition. Topics in Photosynthesis. Pp. 227-287. Elsevier, Amsterdam 1987.
  6. Azevedo, R.A., Alas, R.M., Smith, R.J., Lea, P.J.: Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley.-Physiol. Plant. 104: 280-292, 1998. Go to original source...
  7. Bakardjieva, N., Christova, N., Christov, K.: Effect of calcium and zinc ions on the sensitivity of peroxidase from mosses (Mnium sp.) and ferns (Polypodium vulgare) to high temperature.-Can. J. Bot. 74: 1665-1670, 1996. Go to original source...
  8. Beauchamp, C., Fridovich, I.: Superoxide dismutase: improved assays and assay applicable to acrylamide gels.-Anal. Biochem. 44: 276-287, 1971. Go to original source...
  9. Beligni, M., Lamattina, L.: Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species.-Plant Cell Environ. 25: 737-748, 2002. Go to original source...
  10. Bertamini, M., Nedunchezhian, N.: Photosynthetic responses for Vitis vinifera plants grown at different photon flux densities under field conditions.-Biol. Plant. 48: 149-152, 2004. Go to original source...
  11. Bowes, G.: Facing the inevitable: Plants and increasing atmospheric CO2.-Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 309-332, 1993. Go to original source...
  12. Bowler, C., Montagu, M.V., Inze, D.: Superoxide dismutase and stress tolerance.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 83-116, 1992. Go to original source...
  13. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976. Go to original source...
  14. Casano, L., Gomez, L., Lascano, H., Gonzalez, C., Trippi, V.: Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress.-Plant Cell Physiol. 38: 433-440, 1997. Go to original source...
  15. Chow, W.S., Qain, L., Goodchild, D.J., Anderson, J.M.: Photosynthetic acclimation of Alocasia macrorrhiza (L.) G. Don to growth irradiance: structure, function and composition of chloroplasts.-Aust. J. Plant Physiol. 15: 107-122, 1988. Go to original source...
  16. Di Toppi, L.S., Marabottini, R., Badiani, M., Raschi, A.: Antioxidant status in herbaceous plants growing under elevated CO2 in mini-FACE rings.-J. Plant Physiol. 159: 1005-1013, 2002. Go to original source...
  17. Drake, B.G., Gonzalez-Meler, M.A., Long, S.P.: More efficient plants: a consequence of rising atmospheric CO2?-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 609-639, 1997. Go to original source...
  18. Foyer, C.H., Lelandais, M., Kunert, K.J.: Photooxidative stress in plants.-Physiol. Plant. 92: 696-717, 1994. Go to original source...
  19. Grace, S.C., Logan, B.A.: Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species.-Plant Physiol. 112: 1631-1640, 1996. Go to original source...
  20. Havir, E.A., McHale, N.A.: Regulation of catalase activity on leaves of Nicotiana sylvestris by high CO2.-Plant Physiol. 89: 957, 1989. Go to original source...
  21. Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation.-Arch. Biochem. Biophys. 125: 189-198, 1968. Go to original source...
  22. Hodges, D.M., Forney, C.F.: The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves.-J. exp. Bot. 51: 645-655, 2000. Go to original source...
  23. Jiang, Y., Huang, B.: Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation.-Crop Sci. 41: 436-442, 2001. Go to original source...
  24. Karpinski, S., Escobar, C., Karpinska, B., Creissen, G., Mullineaux, P.M.: Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light.-Plant Cell 9: 627-640, 1997. Go to original source...
  25. Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Criessen, G., Mullineaux, P.M.: Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis.-Science 284: 654-657, 1999. Go to original source...
  26. Kono, Y., Takahashi, M., Asada, K.: Superoxide dismutases from kidney bean leaves.-Plant Cell Physiol. 20: 1229-1235, 1979. Go to original source...
  27. Lambreva, M., Stefanov, D., Tsonev, T.: Changes in Chl a fluorescence and absorbance at 820 nm in bean plants subjected to different regimes of temperature, light intensity and CO2 concentration.-Biol. Veg. Agro-Industrial 1: 221-236, 2004.
  28. Lambreva, M., Stoyanova-Koleva, D., Baldjiev, G., Tsonev, T.: Early acclimation changes in the photosynthetic apparatus of bean plants during short-term exposure to elevated CO2 concentration under high temperature and light intensity.-Agr. Ecosyst. Environ. 106: 219-232, 2005. Go to original source...
  29. Lichtenthaler, H.: Differences in morphology and chemical composition of leaves grown at different light intensities and qualities.-In: Baker, N.R., Davies, W.J., Ong, C.K. (ed.): Control of Leaf Growth. Pp. 201-221. Cambridge University Press, Cambridge 1985.
  30. Lichtenthaler, H.: Chlorophyll and carotenoids: pigments of photosynthetic biomembranes.-Methods Enzymol. 148: 350-381, 1987. Go to original source...
  31. Logan, B.A., Demming-Adams, B., Adams III, W.W.: Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. upon a sudden increase in growth PPFD in the field.-J. exp. Bot. 49: 1881-1888, 1998a. Go to original source...
  32. Logan, B.A., Demming-Adams, B., Adams III, W.W., Grace, S.: Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. acclimated to four growth PPFDs in the field.-J. exp. Bot. 49: 1869-1879, 1998b. Go to original source...
  33. Long, S.P.: Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated?-Plant Cell Environ. 14: 729-739, 1991. Go to original source...
  34. Mishra, N., Fatman, T., Singhal, G.: Development of antioxidative defence system of wheat seedlings in response to high light.-Physiol. Plant. 95: 77-82, 1995. Go to original source...
  35. Pitcher, L., Brennan, E., Zilinskas, B.: The antiozonant ethylenediurea does not act via superoxide dismutase induction in bean.-Plant Physiol. 99: 1388-1392, 1992. Go to original source...
  36. Polle, A.: Protection from oxidative stress in trees as affected by elevated CO2 and environmental stress.-In: Koch, G., Mooney, H. (ed.): Carbon Dioxide and Terrestrial Ecosystems. Pp. 299-316. Academic Press, San Diego 1996. Go to original source...
  37. Polle, A., Eiblmeier, M., Sheppard, L., Murray, M.: Responses of antioxidative enzymes to elevated CO2 in leaves of beech (Fagus sylvatika L.) seedlings grown under a range of nutrient regimes.-Plant Cell Environ. 20: 1317-1321, 1997. Go to original source...
  38. Polle, A., Pfirrmann, T., Chakrabarti, S., Rennenberg, H.: The effects of enhanced ozone and enhanced carbon dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea abies, L.).-Plant Cell Environ. 16: 311-316, 1993. Go to original source...
  39. Popova, L., Tsonev, Ts., Vaklinova, S.: Changes in some photorespiratory and photosynthetic properties in barley leaves after treatment with jasmonic acid.-J. Plant Physiol. 132: 257-261, 1988. Go to original source...
  40. Pritchard, S.G., Ju, Z., van Santen, E., Qiu, J., Weaver, D.B., Prior, S.A., Rogers, H.H.: The influence of elevated CO2 on the activities of antioxidative enzymes in two soybean genotypes.-Aust. J. Plant Physiol. 27: 1061-1068, 2000. Go to original source...
  41. Procházková, D., Wilhelmová, N.: Changes in antioxidative protection in bean cotyledons during natural and continuous irradiation-accelerated senescence.-Biol. Plant. 48: 33-39, 2004. Go to original source...
  42. Rao, M., Hale, B., Ormrod, D.: Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide.-Plant Physiol. 109: 421-432, 1995. Go to original source...
  43. Schwanz, P., Kimball, B.A., Idso, S.B., Hendrix, D.L., Polle, A.: Antioxidants in sun and shade leaves of sour orange trees (Citrus aurantium) after long-term acclimation to elevated CO2.-J. exp. Bot. 47: 1941-1950, 1996a. Go to original source...
  44. Schwanz, P., Picon, C., Vivin, P., Dreyer, E., Guehl, J.-M., Polle, A.: Response of antioxidative system to drought stress in pendunculate oak and maritime pine as modulated by elevated CO2.-Plant Physiol. 110: 393-402, 1996b. Go to original source...
  45. Schwanz, P., Polle, A.: Growth under elevated CO2 ameliorates defences against photo-oxidative stress in poplar (Populus alba × tremula).-Environ. exp. Bot. 45: 43-53, 2001. Go to original source...
  46. Sharkey, T.D.: Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations.-Bot. Rev. 51: 53-105, 1985. Go to original source...
  47. Sims, D.A., Pearcy, R.W.: Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light.-Amer. J. Bot. 79: 449-455, 1992. Go to original source...
  48. Sofo, A., Dichio, B., Xiloyannis, C., Masia, A.: Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree.-Plant Sci. 166: 293-302, 2004. Go to original source...
  49. Thibaud, M.-C., Cortez, N., Riviere, H., Betsche, T.: Photorespiration and related enzymes in pea (Pisum sativum) grown in high CO2.-J. Plant Physiol. 146: 596-603, 1995. Go to original source...
  50. Willekens, H., Inze, D., Montagu, M.V., van Camp, W.: Catalases in plants.-Mol. Breed. 1: 207-228, 1995. Go to original source...