biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 51:530-532, 2007 | DOI: 10.1007/s10535-007-0114-9

Changes in free polyamines and gene expression during peach flower development

J. H. Liu1,*, T. Moriguchi2
1 National Centre of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan, P.R. China
2 National Institute of Fruit Tree Science, Tsukuba, Ibaraki, Japan

Free polyamine contents and expressions of five genes encoding for polyamine biosynthetic enzymes were investigated at four different stages during peach (Prunus persica L. Batsch cv. Akatsuki) flower development. Fresh mass of peach flowers increased, accompanied by reduction in contents of total polyamines and putrescine/spermidine ratio due to decrease in putrescine content. Spermidine, the largest fraction, and spermine, the least part, underwent minor change. Expressions of the five key genes involved in polyamine biosynthesis during flower development did not parallel the changes in free polyamines.

Keywords: HPLC; Prunus persica; putrescine; spermidine; spermine
Subjects: Prunus persica; putrescin; spermidin, spermin

Received: August 16, 2005; Accepted: May 17, 2006; Published: September 1, 2007  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Liu, J.H., & Moriguchi, T. (2007). Changes in free polyamines and gene expression during peach flower development. Biologia plantarum51(3), 530-532. doi: 10.1007/s10535-007-0114-9
Download citation

References

  1. Applewhite, P.B., Kaur-Sawhney, R., Galston, A.W.: A role for spermidine in the bolting and flowering of Arabidopsis.-Physiol. Plant. 108: 314-320, 2000. Go to original source...
  2. Aribaud, M., Martin-Tanguy, J.: Polyamine metabolism in normal and sterile Chrysanthemum morifolium.-Phytochemistry 37: 927-932, 1994. Go to original source...
  3. Bagni, N., Tassoni, A.: Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants.-Amino Acids 20: 301-317, 2001. Go to original source...
  4. Biasi, R., Bagni, N., Costa, G.: Endogenous polyamines in apple and their relationship to fruit set and fruit growth.-Physiol. Plant. 73: 201-205, 1988. Go to original source...
  5. Evans, P.T., Malmberg, R.L.: Do polyamines have roles in plant development?-Annu. Rev. Plant Physiol. Plant mol. Biol. 40: 235-269, 1989. Go to original source...
  6. Galston, A.W., Kaur-Sawhney, R., Altabella, T., Tiburcio, A.F.: Plant polyamines in reproductive activity and response to abiotic stress.-Bot. Acta 110: 197-207, 1997. Go to original source...
  7. Gemperlová, L., Eder J., Cvikrová, M.: Polyamine metabolism during the growth cycle of tobacco BY-2 cells.-Plant Physiol. Biochem. 43: 375-381, 2005. Go to original source...
  8. Huang, C.K., Chang, B.S., Wang, K.C., Her, S.J., Chen, T.W., Chen, Y.A., Cho, C.L., Liao, L.J., Huang, K.L., Chen, W.S., Liu, Z.H.: Changes in polyamine pattern are involved in floral initiation and development in Polianthes tuberosa.-J. Plant Physiol. 161: 709-713, 2004. Go to original source...
  9. Hummel, I., Gouesbet, G., Amrani, A.E., Aïnouche, A., Couée, I.: Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress.-Gene 342: 199-209, 2004. Go to original source...
  10. Jiménez-Bremont, J.F., Hernández-Lucero, E., Alpuche-Solís, A.G., Casas-Flores, S., Barba de la Rosa, A.P.: Differential distribution of transcripts from genes involved in polyamine biosynthesis in bean plants.-Biol. Plant. 50: 551-558, 2006. Go to original source...
  11. Kakkar, R.K., Rai, V.K., Nagar, P.K.: Polyamine uptake and translocation in plants.-Biol. Plant. 40: 481-491, 1997/98. Go to original source...
  12. Kushad, M.M.: Changes in polyamine levels in relationship to the double-sigmoidal growth curve of peaches.-J. amer. Soc. hort. Sci. 123: 950-955, 1998. Go to original source...
  13. Kushad, M.M., Orvos, A.R., Yelenosky, G.: Relative changes in polyamines during citrus flower development.-HortScience 25: 946-948, 1990. Go to original source...
  14. Lin, C.C., Kao, C.H.: NaCl-induced changes in putrescine content and diamine oxidase activity in roots of rice seedlings.-Biol. Plant. 45: 633-636, 2002. Go to original source...
  15. Liu, J.H., Honda, C., Moriguchi, T.: Involvement of polyamine in floral and fruit development.-JARQ 40: 51-58, 2006a. Go to original source...
  16. Liu, J.H., Nada, K., Honda, C., Kitashiba, H., Wen, X.P., Pang, X.M., Moriguchi, T.: Polyamine biosynthesis of apple callus under salt stress: importance of arginine decarboxylase pathway in stress response.-J. exp. Bot. 57: 2589-2599, 2006b. Go to original source...
  17. Liu, J.H., Nada, K., Pang, X.M., Honda, C., Kitashiba, H., Moriguchi, T.: Role of polyamines in peach fruit development and storage.-Tree Physiol. 26: 791-798, 2006c. Go to original source...
  18. Martin-Tanguy, J.: Conjugated polyamines and reproductive development: Biochemical, molecular and physiological approaches.-Physiol. Plant. 100: 675-688, 1997. Go to original source...
  19. Martin-Tanguy, J.: Metabolism and function of polyamines in plants: recent development (new approaches).-Plant Growth Regul. 34: 135-148, 2001. Go to original source...
  20. Smith, T.A.: Polyamines.-Annu. Rev. Plant Physiol. 36: 117-143, 1985. Go to original source...
  21. Tiburcio, A.F., Kaur-Sawhney, R., Galston, A.W.: Polyamine biosynthesis during vegetative and floral bud differentiation in thin layer tobacco tissue cultures.-Plant Cell Physiol. 29: 1241-1249, 1988.
  22. Wan, C.Y., Wilkins, T.A.: A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.).-Anal. Biochem. 223: 7-12, 1994. Go to original source...
  23. Zhang, Z., Honda, C., Kita, M., Hu, C., Nakayama, M., and Moriguchi, T.: Structure and expression of spermidine synthase genes in apple: two cDNAs are spatially and developmentally regulated through alternative splicing.-Mol. Genet. Genom. 268: 799-807, 2003. Go to original source...