biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 51:559-562, 2007 | DOI: 10.1007/s10535-007-0122-9

Photosynthesis and nutrient composition of spinach and fenugreek grown under elevated carbon dioxide concentration

V. Jain1,*, M. Pal1, A. Raj1, S. Khetarpal1
1 Indian Agricultural Research Institute, Division of Plant Physiology, New Delhi, India

The effect of elevated carbon dioxide concentration on the changes in the biomass, photosynthesis and nutrient composition was investigated in two leafy vegetables. Spinach (Spinacia oleracea L.) and fenugreek (Trigonella foenum-graecum L.) plants were grown in open top chambers under either ambient (ACO2, 350 ± 50 µmol mol-1) or elevated (ECO2, 600 ± 50 µmol mol-1) CO2 concentration and analyzed 40, 60 and 80 days after exposure. The plants grown in ECO2 had higher net photosynthetic rate and lower stomatal conductance when compared with the plants grown in ACO2. ECO2 also changed the nutrient composition: a lower N, Mg and Fe contents and higher C and Ca contents were observed in the leaves of plants exposed to ECO2 than in those grown at ACO2.

Keywords: calcium; iron; magnesium; net photosynthetic rate; nitrate reductase; stomatal conductance
Subjects: calcium; CO2 concentration, internal; fenugreek; gas exchange; iron; magnesium; metals; nitrate reductase; open top chamber; spinach; Spinacia oleracea; stomatal conductance; Trigonella foenum-graecum

Received: December 19, 2006; Accepted: July 25, 2006; Published: September 1, 2007  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Jain, V., Pal, M., Raj, A., & Khetarpal, S. (2007). Photosynthesis and nutrient composition of spinach and fenugreek grown under elevated carbon dioxide concentration. Biologia plantarum51(3), 559-562. doi: 10.1007/s10535-007-0122-9
Download citation

References

  1. Aben, S.K., Ghannown, O., Conroy, J.P.: Nitrogen requirements for maximum growth and photosynthesis of rice (Oryza sativa L.) cv. Jarrah grown at 36 and 70 Pa CO2.-Aust. J. Plant Physiol. 26: 759-766, 1999. Go to original source...
  2. Baxter, R., Gantley, M., Ashenden, T.W., Farrar, J. F.: Effects of elevated CO2 on three grass species from montane pasture. II. Nutrient uptake, allocation and efficiency of use.-J. exp. Bot. 45: 1267-1278, 1994. Go to original source...
  3. Bhargava, B.S., Raghupati, H.B.: Analysis of plant materials for macro and micronutrients.-In: Tandon, H.L.S. (ed.): Methods of Analysis of Soils, Plants, Water and Fertilizers. Pp. 49-82. Fertilizer Development Consultation Organization, New Delhi 1993.
  4. Centritto, M., Lee, H., Jarvis, P.G.: Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). Plant growth, allocation and ontogeny.-Tree Physiol. 19: 799-806, 1999. Go to original source...
  5. Centritto, M., Lucas, M.E., Jarvis, P.G.: Gas exchange, biomass, whole plant water use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability.-Tree Physiol. 22: 699-706, 2002. Go to original source...
  6. Coleman, J.S., Mc Connaughay, K.D.M., Bazzaz, F.A.: Elevated CO2 and plant nitrogen use, is reduced tissue nitrogen concentration size dependent?-Oecologia 93: 195-200, 1993. Go to original source...
  7. Conroy, J.P.: Influence of elevated atmospheric CO2 concentrations on plant nutrition.-Aust. J. Bot. 40: 445-456, 1992. Go to original source...
  8. Drake, B.G., Gonzalez Melar, M.A., Long, S.P.: More efficient plants: a consequence of rising atmospheric CO2.-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 609-639, 1997. Go to original source...
  9. Farage, P.K., McKee, I.F., Long, S.P.: Does a low nitrogen supply necessarily lead to acclimation of photosynthesis to elevated CO2?-Plant Physiol. 118: 573-580, 1998. Go to original source...
  10. Gifford, R.M., Barrett, D.J., Lutze, J.L.: The effect of elevated CO2 on C:N and C:P mass ratio of plant tissues.-Plant Soil 224: 1-14, 2000. Go to original source...
  11. Moynul Haque, M., Hamid, A., Khanam, M., Biswas, D.K., Karim, M.A., Khaliq, Q.A., Hossain, M.A., Uprety, D.C.: The effect of elevated CO2 concentration on leaf chlorophyll and nitrogen contents in rice during post-flowering phases.-Biol. Plant. 50: 69-73, 2006. Go to original source...
  12. Pal, M., Karthikeyapandian, V., Jain, V., Srivastava, A.C., Raj, A., Sengupta, U.K.: Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO2.-Agr. Ecosyst. Environ. 101: 31-38, 2004. Go to original source...
  13. Pal, M., Rao, L.S., Jain, V., Srivastava, A.C., Pandey, R., Raj, A., Singh, K. P.: Effects of elevated CO2 and nitrogen on wheat growth and photosynthesis.-Biol. Plant. 49: 467-470, 2005. Go to original source...
  14. Pal, M., Rao, L.S., Srivastava, A.C., Jain, V., Sengupta, U.K.: Impact of CO2 enrichment and variable nitrogen supplies on composition and partitioning of essential nutrients of wheat.-Biol. Plant. 47: 227-231, 2003/4. Go to original source...
  15. Panse, V.G., Sukhatme, P.T.: Statistical Methods for Agricultural Research Workers.-Indian Council of Agricultural Research, New Delhi 1967.
  16. Reeves, D.W., Rogers, H.H., Prior, S.A., Wood, C.W., Runion, G.B.: Elevated atmospheric CO2 effects on sorghum and soybean nutrient status.-J. Plant Nutr. 17: 1939-1954, 1994. Go to original source...
  17. Rogers, G.S., Milham, P.J., Thibaud, M.C., Conroy, J.P.: Interaction between rising CO2 concentration and nitrogen supply in cotton. I. Growth and leaf nitrogen concentration.-Aust. J. Plant Physiol. 23: 119-125, 1996. Go to original source...
  18. Sage, R.F., Sharkey, T.D., Seemann, J.R.: Acclimation of photosynthesis to elevated CO2 in five C3 species.-Plant Physiol. 89: 590-596, 1989. Go to original source...
  19. Schaffer, B., Whiley, A.W., Searle, C., Nissen, R.J.: Leaf gas exchange, dry matter partitioning and mineral element concentrations in mango as influenced by elevated CO2 and root restriction.-J. amer. Soc. hort. Sci. 122: 849-855, 1997. Go to original source...
  20. Schortemeyer, M., Atkin, O.K., McFarlane, N., Evans, J.R.: The impact of elevated CO2 and nitrate supply on growth, biomass allocation, nitrogen partitioning and nitrogen fixation of Acacia melanoxylon.-Aust. J. Plant Physiol. 26: 737-747, 1999. Go to original source...
  21. Sharma, A., Sengupta, U.K.: Carbon dioxide enrichment effect on photosynthesis and related enzymes in Vigna radiata Wilczek.-Indian J. Plant Physiol. 33: 340-346, 1990.
  22. Stitt, M., Krapp, A.: The interaction between elevated CO2 and nitrogen nutrition: the physiological and molecular background.-Plant Cell Environ. 22: 583-621, 1999. Go to original source...
  23. Uprety, D.C., Diwedi, N., Jain, V., Mohan, R.: Effect of elevated carbon dioxide on stomatal parameters of rice cultivars.-Photosynthetica 40: 315-319, 2002. Go to original source...
  24. Uprety, D.C., Diwedi, N., Jain, V., Mohan, R., Saxena, D.C., Jolly, M., Paswan, G.: Responses of rice varieties to elevated CO2.-Biol. Plant. 46: 35-39, 2003. Go to original source...
  25. Uprety, D.C., Mahalaxmi, V.: Effect of elevated CO2 and nitrogen nutrition on photosynthesis, growth and carbon nitrogen balance in Brassica juncea.-J. Agron. Crop Sci. 184: 271-276, 2000. Go to original source...
  26. Van Ginkel, J.H., Gorrissen, A., Van Veen, A.: Carbon and nitrogen allocation in Lolium perenne in response to elevated CO2 with emphasis on soil carbon dynamics.-Plant Soil 188: 299-308, 1997. Go to original source...
  27. Walkley, A., Black, C.A.: An examination of de Gjareff methods for determining soil organic matter and proposed modification of the chromic acid titration method.-Soil Sci. 37: 29-38, 1934. Go to original source...