biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 52:129-132, 2008 | DOI: 10.1007/s10535-008-0026-3

Growth and ultrastructural characteristics of Citrus cells grown in medium containing NaCl

A. L. Ferreira1,*, M. E. Lima-Costa1
1 Faculdade de Engenharia de Recursos Naturais, Universidade do Algarve, Campus de Gambelas, Faro, Portugal

Changes in growth and structural properties of Citrus cell line Carvalhal acclimated to 100 mM NaCl in the medium were compared to unacclimated control cells and cells exposed to 100 mM NaCl. Transmission electron microscopy (TEM) showed presence of ring-shaped mitochondria, increase in the number of amyloplasts and lipid bodies, higher cell wall thickness and partitioned vacuoles in acclimated cells.

Keywords: acclimation; cell culture; cell wall; mitochondria; salt stress; transmission electron microscopy
Subjects: acclimatization, acclimation; Citrus; growth analysis, biomass and yield enhancement; in vitro culture, cell suspension; in vitro culture, growth control; in vitro culture, regeneration; mitochondria; nutrient medium, Murashige and Skoog (MS); salinity, salt stress; transmission electron microscopy (TEM)

Received: June 5, 2006; Accepted: December 1, 2006; Published: March 1, 2008  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ferreira, A.L., & Lima-Costa, M.E. (2008). Growth and ultrastructural characteristics of Citrus cells grown in medium containing NaCl. Biologia plantarum52(1), 129-132. doi: 10.1007/s10535-008-0026-3
Download citation

References

  1. Binzel, M.L., Hess, F.D., Bressan, R.A., Hasegawa, P.M.: Intracellular compartmentation of ions in salt adapted tobacco cells.-Plant Physiol. 86: 607-614, 1988. Go to original source...
  2. Bressan, R.A., Nelson, D.E., Iraki, N.M., LaRosa, P.C.: Reduced cell expansion and changes in cell walls of plant cells adapted to NaCl.-In: Katterman, F. (ed.): Environmental Injury to Plants. Pp. 137-171. Academic Press, San Diego 1990. Go to original source...
  3. Chang, P.F.L., Damsz, B., Kononowicz, A.K., Reuveni, M., Chen, Z., Xu, Y., Hedges, K., Tseng, C.C., Singh, N.K., Binzel, M.L., Narasimhan, M.L., Hasegawa, P.M., Bressan R.A.: Alterations in cell membrane structure and expression of a membrane-associated protein after adaptation to osmotic stress.-Physiol. Plant. 98: 505-516, 1996. Go to original source...
  4. Chinnusamy, V., Jagendorf, A., Zhu, J.K.: Understanding and improving salt tolerance in plants.-Crop Sci. 45: 437-448, 2005. Go to original source...
  5. Ferreira, A.L., Lima-Costa, M.E.: Metabolic responses to salt stress in cell suspension cultures of sensitive and resistant Citrus.-J.H.S.B. 81: 983-988, 2006.
  6. Gosset, D.R., Banks, S.W., Millhollon, E.P., Lucas, M.C.: Antioxidant response to NaCl stress in a control and a NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione.-Plant Physiol. 112: 803-809, 1996. Go to original source...
  7. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, I.U.: Plant cellular and molecular responses to high salinity.-Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 463-499, 2000. Go to original source...
  8. Huang, W.L., Liu, F.L.: Carbohydrate metabolism in rice during callus induction and shoot regeneration induced by osmotic stress.-Bot. Bull. Acad. sin. 43: 107-113, 2002.
  9. Kerkeb, L., Donaire, J.P., Rodriguez-Rosales, M.P.: Plasma membrane H+-ATPase activity is involved in adaptation of tomato calli to NaCl.-Physiol. Plant. 111: 483-490, 2001. Go to original source...
  10. Kuiper, P.J.C.: Functioning of plant cell membranes under saline conditions: membrane lipid composition and ATPases. In: Staples, R.C., Toenniessen, G.H. (ed.): Salinity Tolerance in Plants: Strategies for Crop Improvement. Pp. 77-91. Wiley, New York 1984.
  11. Mansour, M.M.M., Salama, K.H.A.: Cellular basis of salinity tolerance in plants.-Environ. exp. Bot. 52: 113-122, 2004. Go to original source...
  12. Mandhania, S., Madan, S. Sawhney, V.: Antioxidant defense mechanism under salt stress in wheat seedlings.-Biol. Plant. 50: 227-231, 2006. Go to original source...
  13. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassay with tobacco tissue cultures.-Physiol. Plant. 12: 473-497, 1962. Go to original source...
  14. Neto, A.D.A., Prisco, J.T., Enéas-Filho, J., Medeiros, J.V.R., Gomes-Filho, E.: Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants.-J. Plant Physiol. 162: 1114-1122, 2005. Go to original source...
  15. Passos, V.M., Santana, N.O., Gama, F.C., Oliveira, J.G., Azevedo, R.A.: Growth and ion uptake in Annona muricata and A. squamosa subjected to salt stress.-Biol. Plant. 49: 285-288, 2005. Go to original source...
  16. Piqueras, A., Olmos, E., Hellín, E.: Cytological changes related with salt tolerance in embryogenic callus of Citrus limon.-Plant Cell Tissue Organ Cult. 39: 13-18, 1994. Go to original source...
  17. Singh, N.K., Bressan, R.A., Carpita, N.C.: Cell walls of tobacco cells and changes in composition associated with reduced growth upon adaptation to water and saline stress.-Plant Physiol. 91: 48-53, 1989.
  18. Yang, J.Y., Yen, H.E.: Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study.-Plant Physiol. 130: 1032-1042, 2002. Go to original source...
  19. Yeo, A.: Molecular biology of salt tolerance in the context of whole-plant physiology.-J. exp. Bot. 49: 915-929, 1998. Go to original source...