Biologia plantarum 52:695-702, 2008 | DOI: 10.1007/s10535-008-0134-0
The ubiquitin/proteasome pathway from Lemna minor subjected to heat shock
- 1 Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- 2 Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
- 3 Departamento de Botânica e Engenharia Biológica, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal
Exposure of Lemna minor L. to high temperatures leads to an initial decrease in the ubiquitin (Ub) monomer pool size and the accumulation of high molecular mass Ub-protein conjugates, possibly reflecting an increment in the supply of protein substrates to the Ub/proteasome pathway. Alternative explanations include, for example, changes in the transcription rates of one or more pathway components. To measure the effect of heat shock on the simultaneous rates of transcription of selected genes encoding five Ub pathway components (Ub, E1, E2, β subunit and ATPase subunit of the 26S proteasome), a semi-quantitative RT-PCR method was developed using cDNA normalized against the housekeeping gene encoding the 18S ribosomal RNA. Whilst Ub transcription is abruptly increased, there is a moderate increment in the transcription of E1 and the β subunit, a moderate reduction in the transcription of the ATPase subunit and a marked reduction in the case of E2, indicating a differential transcription pattern of the various components of the Ub/proteasome pathway in L. minor subjected to high temperatures. These observations suggest that the increment in the Ub/proteasome pathway intermediates is due to an augmented supply of substrates derived from the stress-induced damage imposed on the cellular proteins. The initial build up of intermediates occurs not only at the expense of the pre-existing pool of free Ub, but also as a result of the prompt increase in Ub expression.
Keywords: ATPase subunit; duckweed; semi-quantitative RT-PCR; transcription
Subjects: ATPase; growth analysis, biomass and yield enhancement; heat stress, high temperature; Lemna minor; polymerase chain reaction (PCR); proteins; RNA; temperature, high; temperature, high
Received: September 26, 2006; Accepted: July 25, 2007; Published: December 1, 2008 Show citation
References
- Basset, G., Raymond, P., Malek, L., Brouquisse, R.: Changes in the expression and the enzymic properties of the 20S proteasome in sugar-starved maize roots. Evidence for an in vivo oxidation of the proteasome.-Plant Physiol. 128: 1149-1162, 2002.
Go to original source... - Belknap, W.R., Garbarino, J.E.: The role of ubiquitin in plant senescence and stress responses.-Trends Plant Sci. 1: 331-335, 1996.
Go to original source... - Benaroudj, N., Zwickl, P., Seemüller, E., Baumeister, W., Goldberg, A.L.: ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation.-Mol. cell. Biol. 11: 69-78, 2003.
Go to original source... - Bond, U., Schlesinger, M.J.: Ubiquitin is a heat shock protein in chicken embryo fibroblasts.-Mol. cell. Biol. 5: 949-956, 1985.
Go to original source... - Callis, J., Vierstra, R.D.: Ubiquitin and ubiquitin genes in higher plants.-Oxford Survey Plant mol. Biol. 6: 1-30, 1989.
- Chaitanya, K.V., Sundar, D., Reddy, A.R.: Mulberry leaf metabolism under high temperature stress.-Biol. Plant. 44: 379-384, 2004.
Go to original source... - Dell'Aquila, A.: Effect of combined salt and heat treatments on germination and heat-shock protein synthesis in lentil seeds.-Biol. Plant. 43: 591-594, 2000.
Go to original source... - Demirevska-Kepova, K., Holzer, R., Simova-Stoilova, L., Feller, U.: Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubisco activase in wheat leaves.-Biol. Plant. 49: 521-525, 2005.
Go to original source... - Ferguson, D.I., Guikema, J.A., Paulsen, G.M.: Ubiquitin pool modulation and protein degradation in wheat roots during high temperature stress.-Plant Physiol. 92: 740-746, 1990.
Go to original source... - Ferreira, R.B., Shaw, N.M.: Effect of osmotic stress on protein turnover in Lemna minor fronds.-Planta 179: 456-465, 1989.
Go to original source... - Ferreira, R.B., Teixeira, A.R.: Sulfur starvation in Lemna leads to degradation of ribulose-bisphosphate carboxylase without plant death.-J. biol. Chem. 267: 7253-7257, 1992.
Go to original source... - Ferreira, R.M., Ramos, P.C., Franco, E., Ricardo, C.P., Teixeira, A.R.: Changes in ubiquitin and ubiquitin-protein conjugates during seed formation and germination.-J. exp. Bot. 46: 211-219, 1995.
Go to original source... - Finley, D., Ozkaynak, E., Varshavsky, A.: The yeast polyubiquitin gene is essential for resistence to high temperatures, starvation, and other stresses.-Cell 48: 1035-1046, 1987.
Go to original source... - Genschik, P., Durr, A., Fleck, J.: Differential expression of several E2-type ubiquitin carrier protein genes at different developmental stages in Arabidopsis thaliana and Nicotiana sylvestris-Mol. gen. Genet. 244: 548-555, 1994.
Go to original source... - Genschik, P., Parmentier, Y., Durr, A., Marbach, J., Criqui, M.C., Jamet, E., Fleck, J.: Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses.-Plant mol. Biol. 20: 897-910, 1992.
Go to original source... - Glickman, M.H., Ciechanover, A.: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction.-Physiol. Rev. 82: 373-428, 2002.
Go to original source... - Glickman, M.H.: Getting in and out of the proteasome.-Semin. Cell Dev. Biol. 11: 149-158, 2000.
Go to original source... - Goldberg, A.L.: Protein degradation and protection against misfolded or damaged proteins.-Nature 426: 895-899, 2003.
Go to original source... - Grune, T., Reinheckel, T., Davies, K.J.: Degradation of oxidized proteins in mammalian cells.-FASEB J. 11: 526-534, 1997.
Go to original source... - Hatfield, P.M., Gosink, M.M., Carpenter, T.B., Vierstra, R.D.: The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana.-Plant J. 11: 213-226, 1997.
Go to original source... - Hatfield, P.M., Vierstra, R.D.: Multiple forms of ubiquitin-activating enzyme E1 from wheat. Identification of an essential cysteine by in vitro mutagenesis.-J. biol. Chem. 267: 14799-14803, 1992.
Go to original source... - Hilt, W., Wolf, D.H.: Proteasomes of the yeast S. cerevisiae: genes, structure and functions.-Mol. Biol. Rep. 21: 3-10, 1995.
Go to original source... - Hoffman, N.E., Ko, K., Milkowski, D., Pichersky, E.: Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3.-Plant mol. Biol. 17: 1189-1201, 1991.
Go to original source... - Iba, K.: Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance.-Annu. Rev. Plant Biol. 53: 225-245, 2002.
Go to original source... - Ito, N., Tomizawa, K., Tanaka, K., Matsui, M., Kendrick, R.E., Sato, T., Nakagawa, H.: Characterization of 26S proteasome alpha-and beta-type and ATPase subunits from spinach and their expression during early stages of seedling development.-Plant mol. Biol. 34: 307-316, 1997.
Go to original source... - Ledesma, N.A., Kawabata, S., Sugiyama, N.: Effect of high temperature on protein expression in strawberry plants.-Biol. Plant. 48: 73-79, 2004.
Go to original source... - Loser, K., Weltring, K.-M.: Induction of a polyubiquitin gene (ubi1) by potato phytoalexins and heat shock in Gibberella pulicaris.-Curr. Genet. 34: 404-409, 1998.
Go to original source... - Meadus, W.J.: A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression.-Biol. Proc. Online 5: 20-28, 2003.
Go to original source... - Myer, A., Schwartz, L.M.: Allelic variation of the polyubiquitin gene in the tobacco hawkmoth, Manduca sexta, and its regulation by heat shock and programmed cell death.-Insect Biochem. mol. Biol. 26: 1037-1046, 1996.
Go to original source... - Noventa-Jordao, M.A., Nascimento, A.M., Goldman, M.H., Terenzi, H.F., Goldman, G.H.: Molecular characterization of ubiquitin genes from Aspergillus nidulans: mRNA expression on different stress and growth conditions.-Biochem. biophys. Acta 1490: 237-244, 2000.
Go to original source... - Rickey, T.M., Belknap, W.R.: Comparison of the expression of several stress-responsive genes in potato tuber.-Plant mol. Biol. 16: 1009-1018, 1991.
Go to original source... - Rollfinke, I.K., Silber, M.V., Pfitzner, U.M.: Characterization and expression of a heptaubiquitin gene from tomato.-Gene 211: 267-276, 1998.
Go to original source... - Schlesinger, M.J., Bond, U.: Ubiquitin genes.-Oxford Surveys Eukaryotic Genes 4: 77-89, 1987.
- Seufert, W., Jentsch, S.: Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins.-EMBO J. 9: 543-550, 1990.
Go to original source... - Shirley, B.W., Goodman, H.M.: An Arabidopsis gene homologous to mammalian and insect genes encoding the largest proteasome subunit.-Mol. gen. Genet. 241: 586-594, 1993.
Go to original source... - Simon, J.R., Treger, J.M., McEntee, K.: Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae.-Mol. Microbiol. 31: 823-832, 1999.
Go to original source... - Smalle, J., Vierstra, R.D.: The ubiquitin 26s proteasome proteolytic pathway.-Annu. Rev. Plant Biol. 55: 555-590, 2004.
Go to original source... - Spees, J.L., Chan, S.A., Snyder, M.J., Chang, E.S.: Osmotic induction of stress-responsive gene expression in the lobster Homarus americanus.-Biol. Bull. 203: 331-337, 2002a.
Go to original source... - Spees, J.L., Chan, S.A., Snyder, M.J., Chang, E.S.: Thermal acclimation and stress in the American lobster, Homarus americanus: equivalent temperature shifts elicit unique gene expression patterns for molecular chaperones and polyubiquitin.-Cell Stress Chaperones 7: 97-106, 2002b.
Go to original source... - Sullivan, J.A., Shirasu, K., Deng, X.W.: The diverse roles of ubiquitin and the 26S proteasome in the life of plants.-Nature Rev. Genet. 4: 948-958, 2003.
Go to original source... - Sullivan, M.L., Carpenter, T.B., Vierstra, R.D.: Homologues of wheat ubiquitin-conjugating enzymes TaUBC1 and TaUBC4 are encoded by small multigene families in Arabidopsis thaliana.-Plant mol. Biol. 24: 651-661, 1994.
Go to original source... - Sun, C.W., Callis, J.: Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs and in response to environmental changes.-Plant J. 11: 1017-1027, 1997.
Go to original source... - Tamás, L., Huttová, J., Zigová, Z.: Accumulation of stress-proteins in intercellular spaces of barley leaves induced by biotic and abiotic factors.-Biol. Plant. 39: 387-394, 1997.
Go to original source... - Vierstra, R.D.: The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins.-Trends Plant Sci. 8: 135-142, 2003.
Go to original source... - Voges, D., Zwickl, P., Baumeister, W.: The 26S proteasome: a molecular machine designed for controlled proteolysis.-Annu. Rev. Biochem. 68: 1015-1068, 1999.
Go to original source... - Xia, X., Mahon, J.: Pea polyubiquitin genes: (I) structure and genomic organization.-Gene 215: 445-452, 1998.
Go to original source... - Yang, Y., Früh, K., Ahn, K., Peterson, P.A.: In vivo assembly of the proteasomal complexes, implications for antigen processing.-J. biol. Chem. 270: 27687-27694, 1995.
Go to original source... - Zhang, X.D., Jenkins, J.N., Callahan, F.E., Creech, R.G., Si, Y., McCarty, J.C., Saha, S., Ma, D.P.: Molecular cloning, differential expression, and functional characterization of a family of class I ubiquitin-conjugating enzyme (E2) genes in cotton (Gossypium).-Biochem. biophys. Acta 1625: 269-279, 2003.
Go to original source...



