biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 53:145-150, 2009 | DOI: 10.1007/s10535-009-0022-2

Differential expression of LEA proteins in two genotypes of mulberry under salinity

G. Jyothsnakumari1, M. Thippeswamy2, G. Veeranagamallaiah2, C. Sudhakar3,*
1 Department of Botany, Acharya Nagarjuna University, Nagarjuma Nagar, India
2 Department of Botany, Sri Krishnadevaraya University, Anantapur, India
3 Biotechnology, Sri Krishnadevaraya University, Anantapur, India

The relative water content (RWC), cell membrane integrity, protein pattern and the expression of late embryogenesis abundant proteins (LEA; group 1, 2, 3 and 4) under different levels of salt stress (0, 1.0, 1.5 and 2.0 % NaCl) were investigated in mulberry (Morus alba L.) cultivars (S1 and ATP) with contrasting salt tolerance. RWC and membrane integrity decreased with increase in NaCl concentration more in cv. ATP than in cv. S1. SDS-PAGE protein profile of mulberry leaves after the NaCl treatments showed a significant increase in 35, 41, 45 and 70 kDa proteins and significant decrease in 14.3, 18, 23, 28, 30, 42, 47 and 65 kDa proteins. Exposure of plants to NaCl resulted in higher accumulation of LEA proteins in S1 than ATP. The maximum content of LEA (group 3 and 4) was detected in S1 at 2.0 % NaCl, which correlates with its salt tolerance.

Keywords: cell membrane stability; Morus alba; NaCl stress; RWC
Subjects: LEA proteins; membrane permeability; Morus alba; mulberry; proteins; relative water content (RWC); salinity

Received: April 24, 2007; Accepted: November 24, 2007; Published: March 1, 2009  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Jyothsnakumari, G., Thippeswamy, M., Veeranagamallaiah, G., & Sudhakar, C. (2009). Differential expression of LEA proteins in two genotypes of mulberry under salinity. Biologia plantarum53(1), 145-150. doi: 10.1007/s10535-009-0022-2
Download citation

References

  1. Allagulova, C.H.R., Gimalov, F.R., Shakirova, F.M., Vahkhitov, V.A.: The plant dehydrins: structure and putative functions.-Biochemistry 68: 945-961, 2003. Go to original source...
  2. Ashraf, M., O'Leary, J.W.: Changes in soluble proteins in spring wheat stressed with sodium chloride.-Biol. Plant. 42: 113-117, 1999. Go to original source...
  3. Bishnoi, S.K., Kumar, B., Rani, C., Datta, K.S., Kumari, P., Sheoran, I.S., Angrish, R.: Changes in protein profile of pigeonpea genotypes in response to NaCl and boron stress.-Biol. Plant. 50: 135-137, 2006. Go to original source...
  4. Cheng, Z.Q., Targolli, J., Huang, X.Q., Wu, R.: Wheat LEA genes PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.).-Mol. Breed. 10: 71-82, 2002. Go to original source...
  5. Cherian, S., Reddy, M.P., Ferreira, R.B.: Transgenic plants with improved dehydration stress tolerance: progress and future prospects.-Biol. Plant. 50: 481-495, 2006. Go to original source...
  6. Close, T.J.: Dehydrins: a commonality in the response of plants to dehydration and low temperature.-Physiol. Plant. 100: 291-296, 1997. Go to original source...
  7. De Souza Filho, G.A., Ferreira, B.S., Dias, J.M., Queiroz, K.S., Bressan-Smith, R.E., Oliveira, J.G., Garcia, A.B.: Accumulation of SALT protein in rice plants as a response to environmental stresses.-Plant Sci. 164: 623-628, 2003. Go to original source...
  8. Duncan, D.M.: Multiple range and multiple tests.-Biometrics 42: 1-47, 1955. Go to original source...
  9. Dure, L., Greeenway, S.C., Galau, G.A.: Developmental and biochemistry of cotton seed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vivo protein synthesis.-Biochemistry 20: 4162-4168, 1981. Go to original source...
  10. Dure, L.: The LEA proteins of higher plants.-In: Verma, D.P.S. (ed.): Control of Plant Gene Expression. Pp. 325-369. CRC Press, Boca Raton 1992.
  11. Dure, L.: Structural motifs in LEA proteins of higher plants.-In: Close, T.J., Bray, E.A. (ed.): Response of Plants to Cellular Dehydration during Environmental Stress. Pp. 48-61. American Society of Plant Physiologists, Rockville 1993.
  12. Erturk, U., Sivritepe, N., Yerlikaya, C., Bor, M., Ozdemir, F., Turkan, I.: Responses of the cherry root stock to salinity in vitro.-Biol Plant. 51: 597-600, 2007. Go to original source...
  13. Farooq, S., Azam, F.: The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties.-J. Plant Physiol. 163: 629-237, 2006. Go to original source...
  14. Hoekstra, F.A., Golovina, E.A., Buitink, J.: Mechanisms of plant desiccation tolerance.-Trends Plant Sci. 6: 431-438, 2001. Go to original source...
  15. Hsing, Y., Chen, Z., Shih, M., Chow, T.: Unusual sequence of group 3 LEA mRNA inducible by maturation or drying in soybean seeds.-Plant mol. Biol. 29: 863-868, 1995. Go to original source...
  16. Hurkman, W.J., Tanaka, C., Fornari, C.: A comparison of the effects of salt on polypeptides and translatable mRNAs in the roots of a salt-tolerant and a salt-sensitive cultivar of barley.-Plant Physiol. 90: 1444-1456, 1989. Go to original source...
  17. Jayaprakash, T.L., Ramamohan, G., Krishnaprasad, B.T., Kumar, G., Prasad. T.G., Mathew, M.K., Udaya Kumar, M.: Genotypic variability in differential expression of lea2 and lea3 genes and proteins in response to salinity stress in finger millet (Eleusine coracana Gaertn.) and rice (Oryza sativa L.) seedlings.-Ann. Bot. 82: 513-522, 1998. Go to original source...
  18. Jyothsnakumari, G., Sudhakar, C.: Effects of jasmonic acid on groundnut during early seedling growth.-Biol. Plant. 47: 453-456, 2003/4. Go to original source...
  19. Jyothsnakumari, G.: Studies on biochemical responses and proteome analysis of two high yielding genotypes of mulberry (Morus alba L.) with differential salt sensitivity.-Ph.D thesis, Sri Krishnadevaraya University, Anantapur, 2005.
  20. Kumari, G.J., Reddy, A.M., Naik, S.T., Kumar, S.G., Prasanthi, J., SriRanganayakulu, G., Reddy, P.C., Sudhakar, C.: Jasmonic acid induced changes in protein pattern, antioxidative enzyme activity and peroxidase isozyme in peanut (Arachis hypogaea L.) seedlings.-Biol. Plant. 50: 219-226, 2006. Go to original source...
  21. Laemmli, U.K.: Cleavage of structural protein during the assembly of the head of the bacteriophage T4.-Nature 83: 90-94, 1970. Go to original source...
  22. Lowry, O.H., Rosenburg, N.J., Farr, A.L., Randall, R.J.: Protein measurement using folin phenol reagent.-J. biol. Chem. 193: 265-275, 1951. Go to original source...
  23. Majoul, T., Chahed, K., Zamiti, E., Ouelhazi, L., Ghir, R.: Analysis by two-dimensional electrophoresis of a salt-tolerant and a salt-sensitive cultivar of wheat.-Electrophoresis 21: 2562-2656, 2000. Go to original source...
  24. Melgar, J.C., Syvertsen, J.P., Martínez, V., García-Sánchez, F.: Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity.-Biol. Plant. 52: 385-390, 2008. Go to original source...
  25. Moons, A., Bauw, G., Prinsen, E., Van Montagu, M., Van der Straeten, D.: Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties.-Plant Physiol. 107: 177-186, 1995. Go to original source...
  26. Moons, A., Gielen, J., Van der Kerckhove, J., Van der Straeten, D., Gheysen, G., Van Montagu, M.: An abscisic acid and salt stress responsive rice cDNA from a novel plant gene family.-Planta 202: 443-454, 1997a. Go to original source...
  27. Moons, A., Prinsen, E., Bauw, G., Van Montagu, M.: Antagonistic effects of abscisic acid and jasmonates on salt stress inducible transcripts in rice roots.-Plant Cell. 9: 2243-2259, 1997b. Go to original source...
  28. Moons, A., De Keyser, A., Van Montagu, M.: A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response.-Gene 191:197-204, 1997c. Go to original source...
  29. Niknam, V., Razavi, N., Ebrahimzadeh, H., Sharifizadeh, B.: Effect of NaCl on biomass, protein and proline contents, and antioxidant enzymes in seedlings and calli of two Trigonella species.-Biol. Plant. 50: 594-596, 2006. Go to original source...
  30. Ouerghi, Z., Remy, R., Ouelhazi, L., Ayadi, A., Brulfert, J.: Two-dimensional electrophoresis of soluble leaf proteins, isolated from two wheat species (Triticum durum and Triticum aestivum) in sensitivity towards NaCl.-Electrophoresis 21: 2487-2491, 2000. Go to original source...
  31. Pareek, A., Singla, S.L., Grover, A.: Salt responsive proteins/genes in crop plants.-In: P.K. Jaiwal, R.P. Singh, A. (ed.): Strategies for Improving Salt Tolerance in Higher Plants. Pp. 365-391. Gulati Oxford and IBH Publication Co., New Delhi 1997.
  32. Premachandra, G.S., Saneoka, H., Kanaya, M., Ogata, S.: Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize.-J. exp. Bot. 42: 167-171, 1991. Go to original source...
  33. Rorat, T.: Plant dehydrins. Tissue location, structure and function.-Cell mol. Biol. Lett. 11: 536-556, 2006. Go to original source...
  34. Sairam, R.K., Rao, K.V., Srivastava, G.C.: Differential response of wheat genotypes to longterm salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration.-Plant Sci. 163: 1037-46, 2002. Go to original source...
  35. Singh, N.K., Nelson, D.E., La Rosa, P.S., Bracker, C.E., Handa, A.K., Hasegawa, P.M., Bressan, R.A.: Osmotin: a protein associated with osmotic stress adaptation in plant cells.-In: Cherry, J.H. (ed.): Environmental Stress in Plants. Pp. 67-87. Springer-Verlag, Berlin 1989. Go to original source...
  36. Sotiropoulos, T.E.: Effect of NaCl and CaCl2 on growth and contents of minerals, chlorophyll, proline and sugars in the apple rootstock M4_cultured in vitro.-Biol. Plant. 51: 177-180, 2007. Go to original source...
  37. Sudhakar, C., Lakshmi, A., Giridarakumar, S.: Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity.-Plant Sci. 161: 613-619, 2001. Go to original source...
  38. Svensson, J., Ismail, A.M., Palva, E.T., Close, T.J.: Dehydrins.-In: Storey, K.B., Storey, J.M. (ed.): Sensing, Signaling and Cell Adaptation. Pp. 155-171. Elsevier Science, Amsterdam 2002. Go to original source...
  39. Towbin, H., Staehelin, T., Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets procedure and some applications.-Proc. nat. Acad. Sci. USA 76: 4350-4354, 1979. Go to original source...
  40. Tripathi, S.B., Gurumurthy, K., Panigrahi, A.K., Shaw, B.P.: Salinity induced changes in proline and betaine contents and synthesis in two aquatic macrophytes differing in salt tolerance.-Biol. Plant. 51: 110-115, 2007. Go to original source...
  41. Turner, N.C.: Techniques and experimental approaches for the measurement of plant water status.-Plant Soil 58: 339-366, 1981. Go to original source...
  42. Uma, S., Prasad, T.G., Kumar, M.U.: Genetic variability in recovery growth and synthesis of stress proteins in response to polyethylene glycol and salt stress in finger millet.-Ann. Bot. 76: 43-49, 1995. Go to original source...
  43. Wahid, A., Close, T.J.: Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves.-Biol. Plant. 51: 104-109, 2007. Go to original source...
  44. Wise, M.J.: LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles.-BMC Bioinform. 4: 52, 2003. Go to original source...
  45. Zhu, B., Chen, T.H., Li, P.H.: Expression of three osmotin-like protein genes in response to osmotic stress and fungal infection in potato.-Plant mol. Biol. 28: 17-26, 1995. Go to original source...