biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 53:637-642, 2009 | DOI: 10.1007/s10535-009-0116-x

Production of transgenic Podophyllum peltatum via Agrobacterium tumefaciens-mediated transformation

V. R. Anbazhagan1, Y. -S. Kim2, Y. -E. Choi1,*
1 Division of Forest Resources, College of Forest Sciences, Kangwon National University, Kangwon-do, South Korea
2 Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara, Japan

Transgenic Podophyllum peltatum plants were successfully produced by Agrobacterium tumefaciens-mediated transformation. Embryogenic callus was co-cultivated with Agrobacterium tumefaciens harboring a binary vector pBI 121 carrying β-glucuronidase (GUS) and neomycinphosphotransferase (NPT II) gene. GUS-histochemical analysis revealed that, 50 µM acetosyringone treatments during Agrobacterium infection and 3 d co-cultivation with Agrobacterium showed enhanced transformation efficiency. Percentage of GUS positive callus increased rapidly as the subculture time proceeded on selection medium containing 100 mg dm-3 kanamycin. Kanamycin resistant somatic embryos were formed from embryogenic callus after cultivation with 11.35 µM abscisic acid (ABA) for 3 weeks and then on hormone-free selection medium. Somatic embryos were germinated and converted into plantlets on medium containing 2.89 µM gibberellic acid (GA3). The integration of GUS and NPT II gene into transgenic plants was confirmed by polymerase chain reaction and Southern analysis.

Keywords: abscisic acid; embryogenic callus; gibberellic acid; GUS gene; kanamycin resistance; NPT II gene
Subjects: Agrobacterium tumefaciens; β-glucuronidase; neomycin phospho-transferase; Podophyllum peltatum; polymerase chain reaction (PCR); Southern blot analysis; transgenic plants

Received: October 1, 2007; Accepted: May 16, 2008; Published: December 1, 2009  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Anbazhagan, V.R., Kim, Y.-S., & Choi, Y.-E. (2009). Production of transgenic Podophyllum peltatum via Agrobacterium tumefaciens-mediated transformation. Biologia plantarum53(4), 637-642. doi: 10.1007/s10535-009-0116-x
Download citation

References

  1. Ayres, N.M., Park, W.D.: Genetic transformation of rice. - Crit. Rev. Plant Sci. 13: 219-239, 1994. Go to original source...
  2. Cervera, M., Pina, J.A., Juarez, J., Navarvo, L., Pena, L.: Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. - Plant Cell Rep. 18: 271-278, 1998. Go to original source...
  3. Chilton, M.D., Currier, T.C., Farrand, S.K., Bendich, A.J., Gordon, M.P., Nester, E.W.: Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. - Proc. nat. Acad. Sci. USA 71: 3672-3676, 1974. Go to original source...
  4. Damayanthi, Y., Lown, J.W.: Podophyllotoxins: current status and recent developments. - Curr. Med. Chem. 5: 205-52, 1998. Go to original source...
  5. Franklin, G., Lakshmi Sita, G.: Agrobacterium tumefaciensmediated transformation of egg plant (Solanum melongena L.) using root explants. - Plant Cell Rep. 21: 549-554, 2003. Go to original source...
  6. Giri, A., Giri, C.C., Dhingra, V., Narasu, M.L.: Enhanced podophyllotoxin production from Agrobacterium rhizogenes transformed cultures of P. hexandrum. - Nat. Prod. Lett. 15: 229-235, 2001. Go to original source...
  7. Godwin, I., Todd, G., Ford-Lloyd, B., Newbury, H.J.: The effects of acetosyringone and pH on Agrobacteriummediated transformation vary according to plant species. - Plant Cell Rep. 9: 671-675, 1991. Go to original source...
  8. Han, K.H., Meilan, R., Ma, C., Strauss, S.H.: An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). - Plant Cell Rep. 19: 315-320, 2000. Go to original source...
  9. Hiei, Y., Komari, T., Kubo, T.: Transformation of rice mediated by Agrobacterium tumefaciens. - Plant mol. Biol. 35: 205-218, 1997. Go to original source...
  10. Howe, A., Sato, S., Dweikat, I., Fromm, M., Clemente, T.: Rapid and reproducible Agrobacterium-mediated transformation of Sorghum. - Plant Cell Rep. 25: 784-791, 2006. Go to original source...
  11. Kim, Y.S., Lim, S., Choi, Y.E., Anbazhagan, V.R.: High frequency plant regeneration via somatic embryogenesis in Podophyllum peltatum L., an important medicinal plant for source of anticancer drug. - Curr. Sci. 92: 662-666, 2007.
  12. Li, X.Q., Liu, C.N., Ritchie, S.W., Peng, J., Gelvin, S.B., Hodges, T.K.: Factors influencing Agrobacterium-mediated transient expression of gusA in rice. - Plant mol. Biol. 20: 1037-1048, 1992. Go to original source...
  13. Lichtenstein, C., Draper, J.: Genetic engineering of plants. - In: Glover, D.M. (ed.): DNA Cloning. Pp. 67-119. IRL Press, Oxford 1985.
  14. Manickavasagam, M., Ganapathi, A., Anbazhagan, V.R., Sudhakar, B., Selvaraj, N., Vasudevan, A., Kasthurirengan, S.: Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharam species hybrids) using axillary buds. - Plant Cell Rep. 23: 134-143, 2004. Go to original source...
  15. May, G.D., Afza, R., Mason, H.A., Wiecko, A., Novak, F.J., Arntzen, C.J.: Generations of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. - Biotechnology 13: 486-492, 1995. Go to original source...
  16. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - Physiol. Plant. 15: 473-497, 1962. Go to original source...
  17. Nadeem, M., Palni, L.M.S., Purohit, A.N., Pandey, H., Nandi, S.K.: Propagation and conservation of Podophyllum hexandrum Royle: an important medicinal herb. - Biol. Conserv. 92: 121-129, 2000. Go to original source...
  18. Saini, R., Jaiwal, P.K.: Efficient transformation of a recalcitrant grain legumes Vigna mungo L. Hepper via Agrobacteriummediated gene transfer into shoot apical meristem cultures. - Plant Cell Rep. 24: 164-171, 2005. Go to original source...
  19. Saini, R., Jaiwal, P.K.: Agrobacterium tumefaciens-mediated transformation of blackgram: an assessment of factors influencing the efficiency of uidA gene transfer. - Biol. Plant. 51: 69-74, 2007. Go to original source...
  20. Schroeder, H.E., Schotz, A.H., Wardley-Richardson, T., Spencer, D., Higgins, T.J.V. Transformation and regeneration of two pea (Pisum sativum) cultivars. - Plant Physiol. 101: 751-757, 1993. Go to original source...
  21. Stachel, S.E., Messens, E., Montagu, M.V., Zambryski, P.: Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. - Nature 318: 624-629, 1985. Go to original source...
  22. Tiwari, R.K., Trivedi, M., Guang, Z.-C., Guo, G.-O., Zheng, G.- C.: Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavonoids in hairy roots. - Biol. Plant. 52: 26-35, 2008. Go to original source...
  23. Van Wordragen, M.F., Dons, H.J.M.: Agrobacterium tumefaciens mediated transformation of recalcitrant crops. - Plant mol. Biol. Rep. 10: 12-36, 1992. Go to original source...
  24. Xiao, K., Zhang, C., Harrison, M., Wang, Z.Y.: Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants. - Mol. Breed. 15: 221-231, 2005. Go to original source...
  25. Yu, T.A., Yeh, S.D., Yang, J.S.: Comparison of the effects of kanamycin and geneticin on regeneration of papaya from root tissue. - Plant Cell Tissue Organ Cult. 74: 169-178, 2003. Go to original source...