biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 53:677-684, 2009 | DOI: 10.1007/s10535-009-0122-z

Cryoproective role of ribitol in Xanthoparmelia somloensis

J. Hájek1,*, P. Váczi1, M. Barták1, L. Smejkal1, H. Lipavská2
1 Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
2 Faculty of Science, Charles University, Prague, Czech Republic

Thalli of Xanthoparmelia somloensis with natural content of polyols (control) and polyol-free thalli (acetone-rinsed) were used to study ribitol effects at low temperatures. Thalli segments were cultivated in ribitol concentration of 32 or 50 mM for 168 h at temperatures +5, 0, and -5 °C. The chlorophyll fluorescence parameters (potential yield of photochemical reactions in PS 2 (variable to maximum fluorescence ratio, Fv/Fm), effective quantum yield of photochemical reactions in PS 2 (ΦPS2), and non-photochemical quenching (NPQ) were monitored in 24-h intervals using an imaging system. The effect of 32 mM ribitol on Fv/Fm and ΦPS2 was apparent only at -5 °C, however, the effect was seen throughout the whole exposure. Surprisingly, 50 mM ribitol concentration treatment led to a decrease in Fv/Fm and ΦPS2 and to an increase in NPQ values at -5 °C, while no change was observed at 0 °C and +5 °C. Acetone-rinsing caused decrease of Fv/Fm, ΦPS2 and NPQ.

Keywords: chlorophyll fluorescence imaging; fluorescence parameters; lichen thallus; low temperature; Trebouxia
Subjects: arabitol; chlorophyll fluorescence; fructose; glucose; mannitol; ribitol; temperature, low; Xanthoparmelia somloensis

Received: August 4, 2008; Accepted: March 3, 2009; Published: December 1, 2009  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hájek, J., Váczi, P., Barták, M., Smejkal, L., & Lipavská, H. (2009). Cryoproective role of ribitol in Xanthoparmelia somloensis. Biologia plantarum53(4), 677-684. doi: 10.1007/s10535-009-0122-z
Download citation

References

  1. Abebe, T., Guenzi, A.C., Martin, B., Cushman, J.C.: Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity.- Plant Physiol. 131: 1748-1755, 2003. Go to original source...
  2. Armstrong, R.A., Smith, S.N.: The levels of ribitol, arabitol and mannitol in individual lobes of the lichen Parmelia conspersa (Ehrh ex Ach) Ach. - Environ. exp. Bot. 34: 253-260, 1994. Go to original source...
  3. Armstrong, R.A., Smith, S.N.: Does radial growth of the lichen Parmelia conspersa depend exclusively on growth processes at the lobe tip? - Environ. exp. Bot. 39: 263-269, 1998. Go to original source...
  4. Aubert, S., Juge, C., Boisson, A.M., Gout, E., Bligny, R.: Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. - Planta 226: 1287-1297, 2007. Go to original source...
  5. Barták, M., Gloser, J., Hájek, J.: Visualized photosynthetic characteristics of the lichen Xanthoria elegans related to daily courses of light, temperature and hydration: a field study from Galindez Island, maritime Antarctica. - Lichenologist 37: 433-443, 2005. Go to original source...
  6. Barták, M., Váczi, P., Hájek, J., Smykla, J.: Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. - Polar Biol. 31: 47-51, 2007. Go to original source...
  7. Barták, M., Vráblíková, H., Hájek, J.: Sensitivity of photosystem 2 of Antarctic lichens to high irradiance stress: Fluorometric study of fruticose (Usnea antarctica) and foliose (Umbilicaria decussata) species. - Photosynthetica 41: 497-504, 2003. Go to original source...
  8. Brunauer, G., Hager, A., Grube, M., Türk, R., Stocker-Wörgötter, E.: Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages. - Plant Physiol. Biochem. 45:146-151, 2007. Go to original source...
  9. Candan, M., Yilmaz, M., Tay, T., Kivanc, M., Turk, H.: Antimicrobial activity of extracts of the lichen Xanthoparmelia pokornyi and its gyrophoric and stenosporic acid constituents. - Z. Naturforsch. C. 61: 319-323, 2006. Go to original source...
  10. Chang, H.L., Chao, G.R., Chen, C.C., Mau, J.L.: Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia. - Food Chem. 74: 203-207, 2001. Go to original source...
  11. Chapman, B.E., Roser, D.J., Seppelt, R.D.: C-13 NMR analysis of antarctic cryptogam extracts. - Antarct. Sci. 6: 295-305, 1994. Go to original source...
  12. Coxson, D.S., Coyle, M.: Niche partitioning and photosynthetic response of alectorioid lichens from subalpine spruce-fir forest in north-central British Columbia, Canada: the role of canopy microclimate gradients. - Lichenologist 35: 157-175, 2003. Go to original source...
  13. Da Silva, M.D.C., Iacomini, M., Jablonski, E., Gorin, P.A.J.: Carbohydrate, glycopeptide and protein components of the lichen Sticta sp. and effect of storage. - Phytochemistry 33: 547-552, 1993. Go to original source...
  14. Dahlman, L., Persson, J., Nasholm, T., Palmqvist, K.: Carbon and nitrogen distribution in the green algal lichens Hypogymnia physodes and Platismatia glauca in relation to nutrient supply. - Planta 217: 41-48, 2003. Go to original source...
  15. Dudley, S.A., Lechowicz, M.J.: Losses of polyol through leaching in Sub-Arctic lichens. - Plant Physiol. 83: 813-815, 1987. Go to original source...
  16. Elix, J.A., Wardlaw, J.H.: Lusitanic acid, peristictic acid and verrucigeric acid. Three new beta-orcinol depsidones from the lichens Relicina sydneyensis and Xanthoparmelia verrucigera. - Aust. J. Chem. 53: 815-818, 2000. Go to original source...
  17. Farrar, J.F.: Ecological physiology of the lichen Hypogymnia physodes. II. Effects of wetting and drying cycles and the concept of 'physiological buffering'. - New Phytol. 77: 105-113, 1976. Go to original source...
  18. Feige, G.B.: Probleme der Flechtenphysiologie. - Nova Hedwigia 30: 725-774, 1978. Go to original source...
  19. Feige, G.B., Jensen, M.: Basic carbon and nitrogen metabolism of lichens. - In: Reisser, W. (ed.): Algae and Symbioses: Plants, Animals, Fungi, Viruses, Interactions Explored. Pp. 277-299. Biopress, Bristol 1992.
  20. Fontaniella, B., Vicente, C., Legaz, M.E.: The cryoprotective role of polyols in lichens: effects on the redistribution of RNAse in Evernia prunastri thallus during freezing. - Plant Physiol. Biochem. 38: 621-627, 2000. Go to original source...
  21. Friedmann, E.I., Sun, H.J.: Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models: I. Hypothesis. - Microbiol. Ecol. 49: 523-527, 2005. Go to original source...
  22. Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  23. Hager, A., Brunauer, G., Turk, R., Stocker-Woergoetter, E.: Production and bioactivity of common lichen metabolites as exemplified by Heterodea muelleri (Hampe) Nyl. - J. chem. Ecol. 34: 113-120, 2008. Go to original source...
  24. Hájek, J., Barták, M., Gloser, J.: Effects of thallus temperature and hydration on photosynthetic parameters of Cetraria islandica from contrasting habitats. - Photosynthetica 39: 427-435, 2001. Go to original source...
  25. Hájek, J., Váczi, P., Barták, M.: Photosynthetic electron transport at low temperatures in the green algal foliose lichens Lasallia pustulata and Umbilicaria hirsuta affected by manipulated levels of ribitol. - Photosynthetica 47: 199-205, 2009. Go to original source...
  26. Hamada, N., Okazaki, K., Shinozaki, M.: Accumulation of monosaccharides in lichen mycobionts cultured under osmotic conditions. - Bryologist 97: 176-179, 1994. Go to original source...
  27. Kappen, L., Schroeter, B., Hestmark, G., Winkler, J.B.: Field measurements of photosynthesis of umbilicarious lichens in winter. - Bot. Acta 109: 292-298, 1996. Go to original source...
  28. Lange, O.L.: Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation II. Diel and seasonal patterns of net photosynthesis and respiration. - Flora 198: 55-70, 2003. Go to original source...
  29. Legaz, M.E., Avalos, A., De Torres, M., Escribano, M.I., Gonzáles, A., Martin-Falquina, A., Pérezurria, E., Vicente, C.: Annual variations in arginine metabolism and phenolic content of Evernia prunastri. - Environ. exp. Bot. 26: 385-396, 1986. Go to original source...
  30. Lines, C.E., Ratcliffe, R.G., Rees, T.A.V., Southon, T.E.: A 13C NMR study of photosynthate transport and metabolism in the lichen Xanthoria catcicola Oxner. - New Phytol. 111: 447-456, 1989. Go to original source...
  31. McEvoy M., Nybakken L., Solhaug K.A., Gauslaa, Y.: UV triggers the synthesis of the widely distributed secondary lichen compound usnic acid. - Mycol. Progr. 5: 221-229, 2006. Go to original source...
  32. Palmqvist, K.: Carbon economy in lichens. - New Phytol. 148: 11-36, 2000. Go to original source...
  33. Pannewitz, S., Green, T.G.A., Maysek, K., Schlensog, M., Seppelt, R., Sancho, L.G., Turk, R., Schroeter, B.: Photosynthetic responses of three common mosses from continental Antarctica. - Antarct. Sci. 17: 341-352, 2005. Go to original source...
  34. Rankovic, B., Misic, M., Sukdolak, S.: Evaluation of antimicrobial activity of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa, and Umbilicaria cylindrica. - Mikrobiology 76: 723-727, 2007. Go to original source...
  35. Reiter, R., Hoftberger, M., Green, T.G.A., Turk, R.: Photosynthesis of lichens from lichen-dominated communities in the alpine/nival belt of the Alps - II: Laboratory and field measurements of CO2 exchange and water relations. - Flora 203: 34-46, 2008. Go to original source...
  36. Richardson, D.H.S., Smith, D.C.: Lichen physiology. IX. Carbohydrate movement from the Trebouxia symbiont of Xanthoria aureola to the fungus. - New Phytol. 67: 61-68, 1968. Go to original source...
  37. Roach, J.A.G., Musser, S.M., Morehouse, K., Woo, J.Y.J.: Determination of usnic acid in lichen toxic to elk by liquid chromatography with ultraviolet and tandem mass spectrometry detection. - J. Agr. Food Chem. 54: 2484-2490, 2006. Go to original source...
  38. Roser, D.J., Melick, D.R., Ling, H.U., Seppelt, R.D.: Polyol and sugar content of terrestrial plants from continental Antarctica. - Antarct. Sci. 4: 413-420, 1992a. Go to original source...
  39. Roser, D.J., Melick, D.R., Seppelt, R.D.: Reductions in the polyhydric alcohol content of lichens as an indicator of environmental pollution. - Antarct. Sci. 4: 185-188, 1992b. Go to original source...
  40. Schlensog, M., Schroeter, B.: A new method for the accurate in situ monitoring of chlorophyll a fluorescence in lichens and bryophytes. - Lichenologist 33: 443-452, 2001. Go to original source...
  41. Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. - In: Schulze, E.D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49-70. Springer-Verlag, Berlin - Heidelberg - New York 1995. Go to original source...
  42. Solhaug, K.A., Gauslaa, Y.: Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina. - Plant Cell Environ. 27: 167-176, 2004. Go to original source...
  43. Stoop, J.M.H., Williamson, J.D., Pharr, D.M.: Mannitol metabolism in plants: a method for coping with stress. - Trends Plant Sci. 1: 139-144, 1996. Go to original source...
  44. Sturgeon, R.J.: Biosynthesis and utilization of storage sugars in algae, fungie, and lichens. - Physiol. vég. 23: 95-106, 1985.
  45. Takahagi, T., Ikezawa, N., Endo, T., Ifuku, K., Yamamoto, Y., Kinoshita, Y., Takeshita, S., Sato, F.: Inhibition of PSII in atrazine-tolerant tobacco cells by barbatic acid, a lichenderived depside. - Biosci. Biotechnol. Biochem. 70: 266-268, 2006. Go to original source...
  46. Tsai, S.Y., Tsai, H.L., Mau, J.L.: Non-volatile taste components of Agaricus blazei, Agrocybe cylindracea and Boletus edulis. - Food Chem. 107: 977-983, 2008. Go to original source...
  47. Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  48. Vojtíąková, L., Munzarová, E., Votrubová, O., Číľková, H., Lipavská, H.: The influence of nitrogen nutrition on the carbohydrate and nitrogen status of emergent macrophyte Acorus calamus L. - Hydrobiologia 563: 73-85, 2006. Go to original source...
  49. Wellburn, A.R.: The spectral determination of chlorophyll a and chlorophhyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. - J. Plant Physiol. 144: 307-313, 1994. Go to original source...