Biologia plantarum 54:279-284, 2010 | DOI: 10.1007/s10535-010-0049-4
The lack of plastidal transit sequence cannot override the targeting capacity of Bradyrhizobium japonicum δ-aminolevulinic acid synthase in transgenic rice
- 1 Agricultural Plant Stress Research Center, Biotechnology Research Institute, Chonnam National University, Gwangju, Korea
- 2 School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
The δ-aminolevulinic acid synthase (ALA-S) is an enzyme which catalyzes the synthesis of δ-aminolevulinic acid (ALA). The Bradyrhizobium japonicum ALA-S coding sequence lacking plastidal transit sequence was introduced into the rice genome (C line). The transgenic lines, C4 and C5, were compared with the transgenic lines expressing TALA-S gene with plastidal transit sequence (P line) to investigate whether the plastidal sequence affects the targeting capacity of B. japonicum ALA-S gene and the ALA-synthesizing capacity in rice plants. The B. japonicum ALA-S mRNA was expressed efficiently in C lines and the protein was localized in the stroma of chloroplasts regardless of the transit sequence as in P lines. The resulting transgenic plants, C line, had similar levels of ALA-S activity, ALA, protoporphyrin IX and chlorophylls, compared to those of P lines. In response to irradiance of 350 μmol m-2 s-1, transgenic lines C4 and C5 displayed the characteristic phenotypes of photodynamic damage, i.e., decreases in photosynthetic parameter Fv/Fm, as in P5 and P14 lines, whereas wild type did not. These results indicate that the lack of the plastidal transit sequence influences neither chloroplast translocation of B. japonicum ALA-S nor ALA-synthesizing capacity in the transgenic rice.
Keywords: chlorophyll; chlorophyll a fluorescence; chloroplast translocation; porphyrin
Subjects: δ-aminolevulinic acid synthase; Bradyrhizobium japonicum; chlorophyll a,b; chlorophyll fluorescence; chloroplast; Oryza sativa; porphyrin; rice; transgenic plants
Received: March 1, 2008; Accepted: January 15, 2009; Published: June 1, 2010 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Alawady, A.E., Grimm, B.: Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. - Plant J. 41: 282-290, 2005.
Go to original source... - Beale, S.I.: δ-Aminolevulinic acid in plants: its biosynthesis, regulation, and role in plastid development. - Annu. Rev. Plant Physiol. 29: 95-120, 1978.
Go to original source... - Ha, S.B., Lee, D.E., Back, K.: Extracellular production of 5-aminolevulinic acid and affinity purification of Bradyrhizobium japonicum 5-aminolevulinic acid synthase in Escherichia coli. - Agr. Chem. Biotechnol. 45: 160-163, 2002.
- Hopf, F.R., Whitten, D.G.: Chemical transformations involving photoexcited porphyrins and metalloporphyrins. - In: Dolphin, D. (ed.): The Porphyrins. Vol. 2. Pp. 191-195. Academic Press, New York 1978.
Go to original source... - Hotta, Y., Tanaka, T., Takaoka, H., Takeuchi, Y., Konnai, M.: Promotive effects of 5-aminolevulinic acid on the yield of several crops. - Plant Growth Regul. 22: 109-114, 1997.
Go to original source... - Hotta, Y., Watanabe, K.: Plant growth-regulating activities of 5- aminolevulinic acid. - Syokubutu-no-Kagaku-Tyousetu 34: 85-96, 1999.
- Jung, S., Back, K., Yang, K., Kuk, Y.I., Chon, S.-U.: Defence response produced during photodynamic damage in transgenic rice overexpressing 5-aminolevulinic acid synthase. - Photosynthetica 46: 3-9, 2008.
Go to original source... - Jung, S., Yang, K., Lee, D.-E., Back, K.: Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice. - Plant Sci. 167: 789-795, 2004.
Go to original source... - Krause, G.H., Briantais, T.M., Vernotte, C.: Characterization of chlorophyll fluorescence spectroscopy at 77 K. I. ΔpH-dependent quenching. - Biochim. biophys. Acta: 723: 169-175, 1983.
Go to original source... - Kruse, E., Grimm, B., Beator, J., Kloppstech, K.: Developmental and circadian control of the capacity for δ-aminolevulinic acid synthesis in green barley. - Planta 202: 235-241, 1997.
Go to original source... - Lee, H.J., Lee, S.B., Chung, J.S., Han, S.U., Han, O., Guh, J.O., Jeon, J.S., An, G., Back, K.: Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. - Plant Cell Physiol. 41: 743-749, 2000.
Go to original source... - McClung, C.R., Somerville, J.E., Guerinot, M.L., Chelm, B.K.: Structure of the Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. - Gene 54: 133-139, 1987.
Go to original source... - Papenbrock, J., Mock, H.P., Kruse, E., Grimm, B.: Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. - Planta 208: 264-273, 1999.
Go to original source... - Pomar, F., Barceló, A.R.: Are red leaves photosynthetically active? - Biol. Plant. 51: 799-800, 2007.
Go to original source... - Rebeiz, C.A., Montazer-Zouhoor, A., Hopen, H.J., Wu, S.M.: Photodynamic herbicides: concept and phenomenology. - Enzyme Microbiol. Technol. 6: 390-401, 1984.
Go to original source... - Roy, C.B., Vivekanandan, M.: Role of aminolevulinic acid in improving biomass production in Vigna catjung, V. mungo, and V. radiate. - Biol. Plant. 41: 211-215, 1998.
Go to original source... - Sasaki, K., Marquez, F.J., Nishio, N., Nagai, S.: Promotive effect of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina platensis. - J. Ferment Bioeng. 79: 453-457, 1995.
Go to original source... - Sasaki, K., Tanaka, T., Nagai, S.: Use of photosynthetic bacteria for the production of SCP and chemicals from organic wastes. - In: Martin, A.M. (ed.): Bioconversion of Waste Materials to Industrial Products. Second Edition. Pp. 247-291. Blackie Academic and Professional, London 1998.
Go to original source... - Tanaka, R., Tanaka, A.: Tetrapyrrole biosynthesis in higher plants. - Annu. Rev. Plant Biol. 58: 321-346, 2007.
Go to original source... - Tanaka, T., Kuramochi, H.: 5-Aminolevulinic acid improves salt tolerance. - Regul. Plant Growth Dev. 36: 190-197, 2001.
- Tanaka, T., Takahashi, K., Hotta, T., Takeuchi, Y., Konnai, M.: Promotive effects of 5-aminolevulinic acid on yield of several crops. - In: Proceedings of the 19th Annual Meeting of Plant Growth Regulator Society of America. Pp. 237-241. Plant Growth Regulator Society of America, Washington 1992.
- Tripathy, B.C., Chakraborty, N.: 5-Aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. - Plant Physiol. 96: 761-767, 1991.
Go to original source... - Urata, G., Granick, S.: Biosynthesis of α-aminoketones and the metabolism of aminoacetone. - J. biol. Chem. 238: 811-820, 1963.
Go to original source... - Urban-Grimal, D., Volland, C., Garnier, T., Dehoux, P., Labbe-Bois, R.: The nucleotide sequence of the hem1 gene and evidence for a precursor form of the mitochondrial 5-aminolevulinic synthase in Saccharomyces cerevisae. - Eur. J. Biochem. 156: 511-519, 1986.
Go to original source... - Watanabe, K., Tanaka, T., Hotta, Y., Kuramochi, H., Takeuchi, Y.: Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. - Plant Growth. Regul. 32: 99-103, 2000.
Go to original source... - Zavgorodnyaya, A., Papenbrock, J., Grimm, B.: Yeast 5-aminolevulinate synthase provides additional chlorophyll precursor in transgenic tobacco. - Plant J. 12: 169-178, 1997.
Go to original source...



