Biologia plantarum 54:587-591, 2010 | DOI: 10.1007/s10535-010-0106-z
Analysis of Lupinus albus heat-shock granule proteins in response to high temperature stress
- 1 Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- 2 Departmento de Botânica e Engenharia Biológica, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal
An important aspect of heat-shock response of lupin (Lupinus albus cv. Rio Maior) is the formation of cytoplasmic granular aggregates, called heat-shock granules (HSGs). In this study, two-dimensional electrophoresis (2-DE) was used to detect the component proteins of HSG complexes formed in vivo. Evaluation of 2-DE revealed differential expression of several proteins under heat shock conditions when compared with control. Among them, small heat-shock proteins (sHSPs) of 15 to 30 kDa were found to be the major representative proteins along with other proteins of relative molecular mass ranging from 36 to 45 kDa and above.
Keywords: molecular chaperone; small heat-shock proteins; thermotolerance
Subjects: heat shock proteins (HSP); lupin; Lupinus albus; proteins; temperature high
Received: December 6, 2008; Accepted: May 17, 2009; Published: September 1, 2010 Show citation
References
- Anderson, P., Kedersha, N.: RNA granules. - J. Cell Biol. 172: 803-808, 2006.
Go to original source... - Araujo, J.L.S., Rumjanek, N.G., Pinheiro, M.M.: Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. - Braz. J. Plant Physiol. 15: 33-41, 2003.
Go to original source... - Blum, H., Beier, H., Gross, H.: Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. - Electrophoresis 8: 93-99, 1987.
Go to original source... - Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Ann. Biochem. 72: 248-254, 1976.
Go to original source... - Buchner, J.: Supervising the fold: functional principles of molecular chaperones. - FASEB J. 10: 10-19, 1996.
Go to original source... - Caeiro, A.S., Ramos, P.C., Teixeira, A. R., Ferreira, R.B.: The ubiquitin/proteasome pathway from Lemna minor subjected to heat shock. - Biol. Plant. 52: 695-702, 2008.
Go to original source... - Cherian, S., Reddy, M.P.: Evaluation of NaCl tolerance in the callus cultures of Suaeda nudiflora Moq. - Biol. Plant. 46: 193-198, 2003.
Go to original source... - Cherian, S., Reddy, M.P., Ferreira, R.B.: Transgenic plants with improved dehydration-stress tolerance: progress and prospects. - Biol. Plant. 50: 481-495, 2006.
Go to original source... - Collada, C., Gomez, L., Casado, R., Aragoncillo, C.: Purification and in vitro chaperone activity of a class I small heat-shock protein abundant in recalcitrant chestnut seeds. - Plant Physiol. 115: 71-77, 1997.
Go to original source... - Ferreira, R.B., Davies, D.D.: Protein degradation in Lemna with particular reference to ribulose biphosphate carboxylase. 1. The effect of light and dark. - Plant Physiol. 83: 869-877, 1987.
Go to original source... - Frydman, J., Nimmesgern, E., Ohtsuka, K., Hartl, U.F.: Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. - Nature 370: 11-117, 1994.
Go to original source... - Groenen, P.J.T.A., Merck, K.B., De Jong, W.W., Bloemendal, H.: Structure and modifications of the junior chaperone α-crystallin. - Eur. J. Biochem. 225: 1-19, 1994.
Go to original source... - Horwitz, J.: The function of α-crystallin in vision. - Seminars cell. dev. Biol. 11: 53-60, 2000.
Go to original source... - Hoyle, N.P., Castelli, L.M., Campbell, S.G., Holmes, L.E., Ashe, M.P.: Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies. - J. cell. Biol. 8: 65-74, 2007.
Go to original source... - Jinn, T., Chem, Y., Lin, C.: Characterization and physiological function of class I low molecular mass, heat shock protein complex in soybean. - Plant Physiol. 108: 693-701, 1995.
Go to original source... - Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. - Nature 227: 680-685, 1970.
Go to original source... - Laksanalamai, P., Maeder, D.L., Robb, F.T.: Regulation and mechanism of action of the small heat shock protein from the hyperthermophilic archaeon Pyrococcus furiosus. - J. Bacteriol. 183: 5198-5202, 2001.
Go to original source... - Lavoie, J.N., Lambert, H., Hickey, E., Weber, L.A., Landry, J.: Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. - Mol. cell. Biol. 15: 505-516, 1995.
Go to original source... - Lin, Q., Wang, Y.M., Nose, A., Hong, H.T.K., Agarie, S.: Effects of high temperature on lipid and protein compositions in tonoplasts isolated from Ananas comosus and Kalanchoe pinnata leaves. - Biol. Plant. 52: 59-65, 2008.
Go to original source... - Mansfield, M.A., Key, J.L.: Cytoplasmic distribution of heat shock proteins in soybean. - Plant Physiol. 86: 1240-1246, 1988.
Go to original source... - Narberhaus, F.: α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. - Microbiol. mol. Biol. Rev. 66: 64-93, 2002.
Go to original source... - Nover, L., Scharf, K.D.: Synthesis, modification and structural binding of heat shock proteins in tomato cell cultures. - Eur. J. Biochem. 139: 303-313, 1984.
Go to original source... - Nover, L., Scharf, K.D., Neumann, D.: Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. - Mol. cell. Biol. 9: 1289-1308, 1989.
Go to original source... - Pinheiro, C., Passarinho, J.A., Ricardo, C.P.: Effect of drought and rewatering on the metabolism of Lupinus albus organs. - J. Plant Physiol. 161: 1203-1210, 2004.
Go to original source... - Pinheiro, C., Kehr, J., Ricardo, C.P.: Effect of water stress on lupin stem protein analysed by two-dimensional gel electrophoresis. - Planta 221: 716-728, 2005.
Go to original source... - Ramagli, L.S.: Quantifying protein in 2-D PAGE solubilization buffers. - In: Andrew, E.J. (ed.): Methods in Molecular Biology - 2-D Proteome Analysis Protocols. Pp. 95-105. Humana Press, Totowa 1999.
- Smykal, P., Hrdy, I., Pechan., P.M.: High molecular mass complexes formed in vivo contain smHSPs and HSP70 and display chaperone-like activity. - Eur. J. Biochem. 267: 2195-2207, 2000a.
Go to original source... - Smykal, P., Masin, J., Hrdy, I., Konopasek, I., Zarsky, V.: Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. - Plant J. 23: 703-713, 2000b.
Go to original source... - Sule, A., Vanrobaeys, F., Hajos, G., Van Beeumen, J., Devreese, B.: Proteomic analysis of small heat shock protein isoform in barley shoots. - Phytochemistry 65: 1853-1863, 2004.
Go to original source... - Sun, W., Montangu, M.V., Verbruggen, N.: Small heat shock proteins and stress tolerance in plants. - Biochim. biophys. Acta 1577: 1-9, 2002.
Go to original source... - Usui, K., Ishii, N., Kawarabayasi, Y., Yohda, M.: Expression and biochemical characterization of two small heat shock proteins from the thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7. - Protein Sci. 13: 134-144, 2004.
Go to original source... - Vierling, E.: The roles of heat-shock proteins in plants. - Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 579-620, 1991.
Go to original source... - Waters, E.R., Lee, G.J., Vierling, E.: Evolution, structure and function of the small heat shock proteins in plants. - J. exp. Bot. 47: 325-338, 1996.
Go to original source...



