biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 56:451-457, 2012 | DOI: 10.1007/s10535-012-0119-x

Engineering ascorbic acid biosynthetic pathway in Arabidopsis leaves by single and double gene transformation

Y. Zhou1, Q. C. Tao1, Z. N. Wang1, R. Fan1, Y. Li1, X. F. Sun1, K. X. Tang2,*
1 State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University, Shanghai, P.R. China
2 Plant Biotechnology Research Center, School of Agriculture and Biology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai, P.R. China

Six genes, which encode enzymes involved in ascorbic acid (AsA) biosynthesis, including guanosine diphosphate (GDP)-mannose pyrophosphorylase (GMP), GDP-mannose-3',5'-epimerase (GME), GDP-galactose guanylyltransferase (GGT), L-galactose-1-phosphate phosphatase (GPP), L-galactose dehydrogenase (GDH) and L-galactono-1,4-lactone dehydrogenase (GLDH) were transformed into Arabidopsis thaliana, to evaluate the contribution of each gene to AsA accumulation. Additionally, two combinations, GGT-GPP and GGT-GLDH, were co-transformed into Arabidopsis with a reliable double-gene transformation system. AsA content of GGT transgenic lines was 2.9-fold higher as compared to the control, and co-transformation led up to 4.1-fold AsA enhancement. These results provided further evidence that GGT is the key enzyme in plant AsA biosynthesis.

Keywords: GDP-L-galactose guanyltransferase; transgenic plants; vitamin C
Subjects: GDP-L-galactose guanyltransferase; transgenic plants; ascorbic acid; PCR; transgenic plans; gene construct; ascorbic acid biosynthesis

Received: January 22, 2011; Accepted: May 16, 2011; Published: September 1, 2012  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zhou, Y., Tao, Q.C., Wang, Z.N., Fan, R., Li, Y., Sun, X.F., & Tang, K.X. (2012). Engineering ascorbic acid biosynthetic pathway in Arabidopsis leaves by single and double gene transformation. Biologia plantarum56(3), 451-457. doi: 10.1007/s10535-012-0119-x
Download citation

References

  1. Agius, F., Gonzalez-Lamothe, R., Caballero, J.L., Munoz-Blanco, J., Botella, M.A., Valpuesta, V.: Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. - Natur. Biotechnol. 21: 177-181, 2003. Go to original source...
  2. Alhagdow, M., Mounet, F., Gilbert, L., Nunes-Nesi, A., Garcia, V., Just, D., Petit, J., Beauvoit, B., Fernie, A.R., Rothan, C., Baldet, P.: Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato. - Plant Physiol. 145: 1408-1422, 2007. Go to original source...
  3. Arrigoni, O., De Tullio, M.: The role of ascorbic acid in cell metabolism: between gene-directed functions and unpredictable chemical reactions. - J. Plant Physiol. 157: 481-488, 2000. Go to original source...
  4. Ausubel, F., Brent, R., Kingston, R., Moore, D., Seidman, J., Smith, J., Struhl, K.: Short Protocols in Molecular Biology. 3rd Ed. - John Wiley&Son, New York 1995.
  5. Badejo, A., Tanaka, N., Esaka, M.: Analysis of GDP-Dmannose pyrophosphorylase gene promoter from acerola (Malpighia glabra) and increase in ascorbate content of transgenic tobacco expressing the acerola gene. - Plant Cell Physiol. 49: 126-132, 2008. Go to original source...
  6. Barth, C., De Tullio, M., Conklin, P.: The role of ascorbic acid in the control of flowering time and the onset of senescence. - J. exp. Bot. 57: 1657-1665, 2006. Go to original source...
  7. Bartoli, C., Guiamet, J., Kiddle, G., Pastori, G.., Di Cagno, R., Theodoulou, F., Foyer, C.: Ascorbate content of wheat leaves is not determined by maximal L-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress. - Plant Cell Environ. 28: 1073-1081, 2005. Go to original source...
  8. Bulley, S., Rassam, M., Hoser, D., Otto, W., Schunemann, N., Wright, M., MacRae, E., Gleave, A., Laing, W.: Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. - J. exp. Bot. 60: 765-778, 2009. Go to original source...
  9. Conklin, P., Gatzek, S., Wheeler, G., Dowdle, J., Raymond, M., Rolinski, S., Isupov, M., Littlechild, J., Smirnoff, N.: Arabidopsis thaliana VTC4 encodes L-galactose-1-phosphatase, a plant ascorbic acid biosynthetic enzyme. - J. biol. Chem. 281: 15662-15670, 2006. Go to original source...
  10. Conklin, P., Norris, S., Wheeler, G., Williams, E., Smirnoff, N., Last, R.: Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. - Proc. nat. Acad. Sci. USA 96: 4198-4203, 1999. Go to original source...
  11. Davey, M., Van Montagu, M., Inze, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I., Strain, J., Favell, D., Fletcher, J.: Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. - J. Sci. Food Agr. 80: 825-860, 2000. Go to original source...
  12. De Tullio, M., Liso, R., Arrigoni, O.: Ascorbic acid oxidase: an enzyme in search of a role. - Biol. Plant. 48: 161-166, 2004. Go to original source...
  13. Dowdle, J., Ishikawa, T., Gatzek, S., Rolinski, S., Smirnoff, N.: Two genes in Arabidopsis thaliana encoding GDP-Lgalactose phosphorylase are required for ascorbate biosynthesis and seedling viability. - Plant J. 52: 673-689, 2007. Go to original source...
  14. Gatzek, S., Wheeler, G., Smirnoff, N.: Antisense suppression of l-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis. - Plant J. 30: 541-553, 2002. Go to original source...
  15. Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., Faurobert, M., Gouble, B., Page, D., Garcia, V., Petit, J., Stevens, R., Causse, M., Fernie, A., Lahaye, M., Rothan, C., Baldet, P.: GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. - Plant J. 60: 499-508, 2009. Go to original source...
  16. Imai, T., Karita, S., Shiratori, G., Hattori, M., Nunome, T., Oba, K., Hirai, M.: L-galactono-gamma-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. - Plant Cell Physiol. 39: 1350-1358, 1998. Go to original source...
  17. Ishikawa, T., Dowdle, J., Smirnoff, N.: Progress in manipulating ascorbic acid biosynthesis and accumulation in plants (vol 126, pg 343, 2006). - Physiol. Plant. 129: 831-831, 2007. Go to original source...
  18. Jain, A., Nessler, C.: Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. - Mol. Breed. 6: 73-78, 2000. Go to original source...
  19. Laing, W., Bulley, S., Wright, M., Cooney, J., Jensen, D., Barraclough, D., MacRae, E.: A highly specific Lgalactose-1-phosphate phosphatase on the path to ascorbate biosynthesis. - Proc. nat. Acad. Sci. USA 101: 16976-16981, 2004. Go to original source...
  20. Laing, W., Wright, M., Cooney, J., Bulley, S.: The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. - Proc. nat. Acad. Sci. USA 104: 9534-9539, 2007. Go to original source...
  21. Li, Y., Zhou, Y., Wang, Z., Sun, X., Tang, K.: Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. - Plant Sci. 178: 312-320. 2010. Go to original source...
  22. Linster, C., Clarke, S.: L-Ascorbate biosynthesis in higher plants: the role of VTC2. - Trends Plant Sci. 13: 567-573, 2008. Go to original source...
  23. Linster, C., Gomez, T., Christensen, K., Adler, L., Young, B., Brenner, C., Clarke, S.: Arabidopsis VTC2 encodes a GDPL-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. - J. biol. Chem. 282: 18879-18885, 2007. Go to original source...
  24. Loewus, F.: Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. - Phytochemistry 52: 193-210, 1999. Go to original source...
  25. Loewus, F., Loewus, M.: Biosynthesis and Metabolism of Ascorbic-Acid in Plants. - Crc Critical Rev. in Plant Sci. 5:101-119, 1987 Go to original source...
  26. Lorence, A., Chevone, B., Mendes, P., Nessler, C.: myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. - Plant Physiol. 134: 1200-1205, 2004. Go to original source...
  27. Muller-Moule, P., Golan, T., Niyogi, K.: Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. - Plant Physiol. 134: 1163-1172, 2004. Go to original source...
  28. MichaŁowicz, J., Urbanek, H., Bukowska, B., Duda, W.: The effect of 2,4-dichlorophenol and pentachlorophenol on antioxidant system in the leaves of Phalaris arudinacea. - Biol. Plant. 54: 597-600, 2010. Go to original source...
  29. Pastori, G., Kiddle, G., Antoniw, J., Bernard, S., Veljovic-Jovanovic, S., Verrier, P.J., Noctor, G., Foyer, C.H.: Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. - Cell 15: 939-951, 2003. Go to original source...
  30. Reuhs, B., Glenn, J., Stephens, S., Kim, J., Christie, D., Glushka, J., Zablackis, E., Albersheim, P., Darvill, A., O'Neill, M.: L-Galactose replaces l-fucose in the pectic polysaccharide rhamnogalacturonan II synthesized by the Lfucose-deficient mur1 Arabidopsis mutant. - Planta 219: 147-157, 2004. Go to original source...
  31. Smirnoff, N.: Ascorbate biosynthesis and function in photoprotection. - Phil. Trans. roy. Soc London B Biol. Sci. 355: 1455-1464, 2000. Go to original source...
  32. Smirnoff, N., Wheeler, G.: Ascorbic acid in plants: biosynthesis and function. - Crit. Rev. Biochem. mol. Biol. 35: 291-314, 2000. Go to original source...
  33. Tokunaga, T., Miyahara, K., Tabata, K., Esaka, M.: Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for l-galactono-1,4-lactone dehydrogenase. - Planta 220: 854-863, 2005. Go to original source...
  34. Wang, Z., Xiao, Y., Chen, W., Tang, K., Zhang, L.: Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. - J. Integr. Plant Biol. 52: 400-409, 2010. Go to original source...
  35. Wheeler, G., Jones, M., Smirnoff, N.: The biosynthetic pathway of vitamin C in higher plants. - Nature 393: 365-369, 1998. Go to original source...
  36. Wolucka, B., Persiau, G., Van Doorsselaere, J., Davey, M., Demol, H., Van de Kerckhove, J., Van Montagu, M., Zabeau, M., Boerjan, W.: Partial purification and identification of GDP-mannose 3",5"-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. - Proc. nat. Acad. Sci. USA 98: 14843-14848, 2001. Go to original source...
  37. Wolucka, B., Van Montagu, M.: GDP-mannose 3',5'-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. - J. biol. Chem. 278: 47483-47490, 2003. Go to original source...
  38. Wolucka, B., Van Montagu, M.: The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: An opinion. - Phytochemistry 68: 2602-2613, 2007. Go to original source...
  39. Zhang, X., Henriques, R., Lin, S., Niu, Q., Chua, N.: Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. - Nat. Protoc. 1: 641-646, 2006. Go to original source...