biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 59:29-36, 2015 | DOI: 10.1007/s10535-014-0471-0

Expression of a WIN/SHN-type regulator from wheat triggers disorganized proliferation in the Arabidopsis leaf cuticle

K. Jäger1, A. Miskó2, A. Fábián1, C. Deák2, E. Kiss-Bába2, D. Polgári1, B. Barnabás1, I. Papp2,*
1 Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
2 Department of Plant Physiology and Plant Biochemistry, Faculty of Horticultural Science, Corvinus University of Budapest, Budapest, Hungary

Based on information from the Arabidopsis model system, a putative transcriptional activator of cuticle formation (TaSHN1) was selected among the expressed sequence tags in wheat (Triticum aestivum L.). RT-PCR indicated the preferential expression of this gene in the basal, but not in the middle parts of wheat leaves. This leaf region is a likely site of cuticle formation in cereals. TaSHN1 was cloned and expressed in Arabidopsis, resulting in shiny leaf surfaces and the overproliferation of cuticular material as observed by electron microscopy. Unlike the Arabidopsis WAX INDUCER/SHINE1 (WIN/SHN1) gene, TaSHN1 triggered disorganized cuticular ultrastructure in the transgenic leaves, with the continuous layers replaced by large electrodense bodies embedded in amorphous lipid material. Toluidine blue staining and dark-adapted water release indicated increased cuticular permeability in TaSHN1-expressing Arabidopsis leaves. The expression of TaSHN1 resulted in a moderate decrease of the total number of stomata per unit leaf area in comparison with the wild type. Drought tolerance of Arabidopsis was unaffected by the transgene. The data indicate that this putative wheat orthologue of WIN/SHN transcription factors (TaSHN1) elicited both overlapping and new, distinctive phenotypes compared to other WIN/SHN-overexpressing plants. TaSHN1 transgenic Arabidopsis lines should provide a rich source of material for further comparative biochemical, physiological, and genetic studies.

Keywords: cutin; drought tolerance; stomata; Triticum aestivum; wax; WIN, SHN transcription factors
Subjects: WIN/SHN-type regulator; cuticle; drought tolerance; relative water content; transgenic plans

Received: December 3, 2013; Revised: May 22, 2014; Accepted: August 20, 2014; Published: January 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Jäger, K., Miskó, A., Fábián, A., Deák, C., Kiss-Bába, E., Polgári, D., Barnabás, B., & Papp, I. (2015). Expression of a WIN/SHN-type regulator from wheat triggers disorganized proliferation in the Arabidopsis leaf cuticle. Biologia plantarum59(1), 29-36. doi: 10.1007/s10535-014-0471-0
Download citation

Supplementary files

Download filebpl-201501-0004_S1.pdf

File size: 567.01 kB

References

  1. Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., Van Arkel, G., Pereira, A.: The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. - Plant Cell 16: 2463-2480, 2004. Go to original source...
  2. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment search tool. - J. mol. Biol. 215: 403-410, 1990. Go to original source...
  3. Borisjuk, N., Hrmova, M., Lopato S.: Transcriptional regulation of cuticle biosynthesis. - Biotechnol. Adv. 32: 526-540, 2014. Go to original source...
  4. Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R., Görlach, J.: Growth-stagebased phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. - Plant Cell 13: 1499-1410, 2001. Go to original source...
  5. Broun, P., Poindexter, P., Osborne, E., Jiang, C.Z., Riechmann, J.L.: WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. - Proc. nat. Acad. Sci. USA 101: 4706-4711, 2004. Go to original source...
  6. Chen, G., Komatsuda, T., Ma, J.F., Nawrath, C., Pourkheirandish, M., Tagiri, A., Hu, Y.G., Sameri, M., Li, X., Zhao, X., Liu, Y., Li, C., Ma, X., Wang, A., Nair, S., Wang, N., Miyao, A., Sakuma, S., Yamaji, N., Zheng, X., Nevo, E.: An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. - Proc. nat. Acad. Sci. USA 108: 12354-12359, 2011. Go to original source...
  7. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D.: Multiple sequence alignment with the Clustal series of programs. - Nucl. Acids Res. 31: 3497-3500, 2003. Go to original source...
  8. Guóth, A., Tari, I., Gallé, Á., Csiszár, J., Pécsváradi, A., Cseuz, L., Erdei, L.: Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: changes in flag leaf photosynthetic activity, ABA levels, and grain yield. - J. Plant Growth Regul. 28: 167-176, 2009. Go to original source...
  9. Hellens, R.P., Edwards, E.A., Leyland, N.R., Bean, S., Mullineaux, P.M.: pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. - Plant mol. Biol. 42: 819-832, 2000. Go to original source...
  10. Hu, X.J., Zhang, Z.B., Fu, Z.Y., Xu, P., Hu, S.B., Li, W.Q.: Significance of a β-ketoacyl-CoA synthase gene expression for wheat tolerance to adverse environments. - Biol. Plant. 54: 575-578, 2010a. Go to original source...
  11. Hu, X.J., Zhang, Z.B., Xu, P., Fu, Z.Y., Hu, S.B., Song, W.Y.: Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses. - Biol. Plant. 54: 213-223, 2010b. Go to original source...
  12. Kannangara, R., Branigan, C., Liu, Y., Penfield, T., Rao, V., Mouille, G., Höfte, H., Pauly, M., Riechmann, J.L., Broun, P.: The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. - Plant Cell 19: 1278-1294, 2007. Go to original source...
  13. Koncz, C., Schell, J.: The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. - Mol. gen. Genet. 204: 383-396, 1986. Go to original source...
  14. Kosma, D.K., Bourdenx, B., Bernard, A., Parsons, E.P., Lü, S., Joubès, J., Jenks, M.A.: The impact of water deficiency on leaf cuticle lipids of Arabidopsis. - Plant Physiol. 151: 1918-1929, 2009. Go to original source...
  15. Kosma, D.K., Nemacheck, J.A., Jenks, M.A., Williams, C.E.: Changes in properties of wheat leaf cuticle during interactions with Hessian fly. - Plant J. 63: 31-43, 2010. Go to original source...
  16. Kunst, L., Samuels, S.: Plant cuticles shine: advances in wax biosynthesis and export. - Curr. Opin. Plant. Biol. 12: 721-727, 2009. Go to original source...
  17. Mochida, K., Yoshida, T., Sakurai, T., Ogihara, Y., Shinozaki, K.: TriFLDB: a database of clustered full-length coding sequences from Triticeae with applications to comparative grass genomics. - Plant Physiol. 150: 1135-1146, 2009. Go to original source...
  18. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - Physiol. Plant. 15: 473-497, 1962. Go to original source...
  19. Paolacci, A.R., Tanzarella, O.A., Porceddu, E., Ciaffi, M.: Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. - BMC mol. Biol. 10: 11, 2009. Go to original source...
  20. Rawson, H.M., Clarke, J.M.: Nocturnal transpiration in wheat. - Aust. J. Plant Physiol. 15: 397-406, 1988. Go to original source...
  21. Richardson, A., Franke, R., Kerstiens, G., Jarvis, M., Schreiber, L., Fricke, W.: Cuticular wax deposition in growing barley (Hordeum vulgare) leaves commences in relation to the point of emergence of epidermal cells from the sheaths of older leaves. - Planta 222: 472-483, 2005. Go to original source...
  22. Richardson, A., Wojciechowski, T., Franke, R., Schreiber, L., Kerstiens, G., Jarvis, M., Fricke, W.: Cuticular permeance in relation to wax and cutin development along the growing barley (Hordeum vulgare) leaf. - Planta 225: 1471-1481, 2007. Go to original source...
  23. Riederer, M., Schreiber, L.: Protecting against water loss: analysis of the barrier properties of plant cuticles. - J. exp. Bot. 52: 2023-2032, 2001. Go to original source...
  24. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: A Laboratory Manual. - Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989.
  25. ©antrůček J., ©imánová E., Karbulková J., ©imková M., Schreiber L.: A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. - J. exp. Bot. 55: 1411-1422, 2004. Go to original source...
  26. Sirichandra, C., Wasilewska, A., Vlad, F., Valon, C., Leung, L.: The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. - J. exp. Bot. 60: 1439-1463, 2009. Go to original source...
  27. Spurr, A.R.: A low viscosity epoxy embedding medium for electron microscopy. - J. Ultrast. Res. 26: 31-43, 1969. Go to original source...
  28. Taketa, S., Amano, S., Tsujino, Y., Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K., Kanamori, H., Kawasaki, S., Takeda, K.: Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. - Proc. nat. Acad. Sci. USA 105: 4062-7, 2008. Go to original source...
  29. Tanaka, T., Tanaka, H., Machida, C., Watanabe, M., Machida, Y.: A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. - Plant J. 37: 139-146, 2004. Go to original source...
  30. Tischner, T., Kőszegi, B., Veisz, O.: Climatic programmes used in the Martonvásár phytotron most frequently in recent years. - Acta agron. hung. 45: 85-104, 1997.
  31. Wang, Y., Wan, L., Zhang, L., Zhang, Z., Zhang, H., Quan, R., Zhou, S., Huang, R.: An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. - Plant mol. Biol. 78: 275-288, 2012. Go to original source...
  32. Weng H., Molina I., Shockey J., Browse J. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. - Planta 231: 1089-1100, 2010. Go to original source...
  33. Wu, R., Li, S., He, S., Wassmann, F., Yu, C., Qin, G., Schreiber, L., Qu, L.J., Gu, H.: CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. - Plant Cell 23: 3392-3411, 2011. Go to original source...
  34. Yang, J., Ordiz, M., Jaworski, J.G., Beachy, R.N.: Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. - Plant Physiol. Biochem. 49: 1448-1455, 2011. Go to original source...
  35. Yu, D., Ranathunge, K., Huang, H., Pei, Z., Franke, R., Schreiber, L., He, C.: Wax Crystal-Sparse Leaf1 encodes a beta-ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. - Planta 228: 675-685, 2008. Go to original source...
  36. Zhang J.Y., Broeckling C.D., Blancaflor E.B., Sledge M.K., Sumner L.W., Wang Z.Y.: Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). - Plant J. 42: 689-707, 2005. Go to original source...
  37. Zhang X., Henriques R., Lin S.S., Niu Q.W., Chua N.H.: Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. - Nat. Protocols 1: 641-646, 2006. Go to original source...