biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 59:570-580, 2015 | DOI: 10.1007/s10535-015-0519-9

NADPH oxidase RBOHD contributes to autophagy and hypersensitive cell death during the plant defense response in Arabidopsis thaliana

H. B. Liu1,2,3, X. D. Wang1, Y. Y. Zhang3, J. J. Dong1,2, C. Ma1,2, W. L. Chen1,*
1 MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, P.R. China
2 Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou, P.R. China
3 Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P.R. China

Autophagy has been implicated as a cellular protein degradation process that is used to recycle cytoplasmic components under biotic and abiotic stresses and so restrict programmed cell death (PCD). In this study, we report a novel regulatory mechanism by which NADPH oxidase respiratory burst oxidase homolog D (RBOHD) regulated pathogen-induced autophagy and hypersensitive (HR) cell death. We found that the Pseudomonas syringae pv tomato bacteria DC3000 expressing avrRps4 (Pst-avrRps4) induction of RBOHD-dependent reactive oxygen species (ROS) production promoted the onset of autophagy, whereas a pretreatment with an NADPH oxidase RBOHD inhibitor reversed this trend. The inhibitor significantly blocked pathogen-induced autophagosome formation and ROS increase. Moreover, we also show that in the wild-type and atrbohF mutant, Pst-avrRps4-induced cell death was limited, whereas in the case of the atrbohD mutant, the infection triggered a spreading-type necrosis. Our results demonstrate that the RBOHD-dependent ROS accumulation stimulated autophagosome formation and limited HR cell death.

Keywords: mutants; pathogen resistance; programmed cell death; Pst-avrRps4
Subjects: autophagy; hypersensitive reaction; pathogen resistance; NADPH oxidase; mutants; gene expression

Received: July 15, 2014; Revised: January 2, 2015; Accepted: January 8, 2015; Published: September 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Liu, H.B., Wang, X.D., Zhang, Y.Y., Dong, J.J., Ma, C., & Chen, W.L. (2015). NADPH oxidase RBOHD contributes to autophagy and hypersensitive cell death during the plant defense response in Arabidopsis thaliana. Biologia plantarum59(3), 570-580. doi: 10.1007/s10535-015-0519-9
Download citation

Supplementary files

Download filebpl-201503-0021_S1.pdf

File size: 451.82 kB

References

  1. Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A., Lamb, C.: Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. - Cell 92: 773-784, 1998. Go to original source...
  2. Bi, Y., Chen, W., Zhang, W., Zhou, Q., Yun, L., Xing, D.: Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium induced cell death in Arabidopsis thaliana. - Biol. Cell 101: 629-643, 2009. Go to original source...
  3. Bolwell, G.P., Davies, D.R., Gerrish, C., Auh, C.K., Murphy, T.M.: Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms. - Plant Physiol. 116: 1379-1385, 1998. Go to original source...
  4. Doelling, J.H., Walker, J.M., Friedman, E.M., Thompson, A.R., Vierstra, R.D.: The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. - J. biol. Chem. 277: 33105-33114, 2002. Go to original source...
  5. Gao, X., Chen, X., Lin, W., Chen, S., Lu, D., Niu, Y., Li, L., Cheng, C., McCormack, M., Sheen, J., Shan, L., He, P.: Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases. - PLoS Patholog. 9: e1003127, 2013. Go to original source...
  6. Hammond-Kosack, K.E., Jones, J.D.: Resistance genedependent plant defense responses. - Plant Cell 8: 1773-1791, 1996. Go to original source...
  7. Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., Ohsumi, Y.: Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. - Plant Physiol. 129: 1181-1193, 2002. Go to original source...
  8. Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D.I., Petersen, N.H., Mattsson, O., Jorgensen, L.B., Jones, J.D., Mundy, J., Petersen, M.: Autophagic components contribute to hypersensitive cell death in Arabidopsis. - Cell 137: 773-783, 2009. Go to original source...
  9. Iavicoli, A., Boutet, E., Buchala, A., Métraux, J.P.: Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. - MPMI 16: 851-858, 2003. Go to original source...
  10. Inoue, Y., Suzuki, T., Hattori, M., Yoshimoto, K., Ohsumi, Y., Moriyasu, Y.: AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. - Plant Cell Physiol. 47: 1641-1652, 2006. Go to original source...
  11. Jiang, M., Zhang, J.: Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. - Planta 215: 1022-1030, 2002. Go to original source...
  12. Lai, Z., Wang, F., Zheng, Z., Fan, B., Chen, Z.: A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. - Plant J. 66: 953-968, 2011. Go to original source...
  13. Lam, E.: Controlled cell death, plant survival and development. - J. mol. cell. Biol. 5: 305-315, 2004. Go to original source...
  14. Levine, A., Tenhaken, R., Dixon, R., Lamb, C.: H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. - Cell 79: 583-593, 1994. Go to original source...
  15. Liu, J., Zhou, J., Xing, D.: Phosphatidylinositol 3-kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity. - PLoS One 7: e33817, 2012. Go to original source...
  16. Liu, Y., Bassham D.C.: TOR is a negative regulator of autophagy in Arabidopsis thaliana. - PLoS One 5: e11883, 2010. Go to original source...
  17. Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., Dinesh-Kumar, S.P.: Autophagy regulates programmed cell death during the plant innate immune response. - Cell 121: 567-577, 2005. Go to original source...
  18. Liu, Y., Xiong, Y., Bassham, D.C.: Autophagy is required for tolerance of drought and salt stress in plants. - Autophagy 5: 954-963, 2009. Go to original source...
  19. Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., Dangl, J.L.: Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. - Cell 112: 379-389, 2003. Go to original source...
  20. McDowell, J.M., Dangl, J.L.: Signal transduction in the plant immune response. - Trends Biochem. Sci. 25: 79-82, 2000. Go to original source...
  21. Millet, Y.A., Danna, C.H., Clay, N.K., Songnuan, W., Simon, M.D., Werck-Reichhart, D., Ausubel, F.M.: Innate immune responses activated in Arabidopsis roots by microbeassociated molecular patterns. - Plant Cell 22: 973-990, 2010. Go to original source...
  22. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, M., Kuchitsu, K.: Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. - J. biol. Chem. 283: 8885-8892, 2008. Go to original source...
  23. Patel, S., Dinesh-Kumar, S.P.: Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. - Autophagy 4: 20-27, 2008. Go to original source...
  24. Pogány, M., Von Rad, U., Grün, S., Dongó, A., Pintye, A., Simoneau, P., Bahnweg, G., Kiss, L., Barna, B., Durner, J.: Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. - Plant Physiol. 151: 1459-1475, 2009. Go to original source...
  25. Rose, T.L., Bonneau, L., Der, C., Marty-Mazars, D., Marty, F.: Starvation-induced expression of autophagy-related genes in Arabidopsis. - Biol. Cell 98: 53-67, 2006. Go to original source...
  26. Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., Elazar, Z.: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. - EMBO J. 26: 1749-1760, 2007. Go to original source...
  27. Seay, M., Hayward, A.P., Tsao, J., Dinesh-Kumar, S.P.: Something old, something new: plant innate immunity and autophagy. - Curr. Topics Microbiol. 335: 287-306, 2009. Go to original source...
  28. Seay, M., Patel, S., Dinesh-Kumar, S.P.: Autophagy and plant innate immunity. - Cell Microbiol. 8: 899-906, 2006. Go to original source...
  29. Slavíková, S., Shy, G., Yao, Y., Glozman, R., Levanony, H., Pietrokovski, S., Elazar, Z., Galili, G.: The autophagyassociated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. - J. exp. Bot. 56: 2839-2849, 2005. Go to original source...
  30. Thompson, A.R., Doelling, J.H., Suttangkakul, A., Vierstra, R.D.: Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. - Plant Physiol. 138: 2097-2110, 2005. Go to original source...
  31. Torres, M.A., Dangl, J.L.: Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. - Curr. Opin. Plant Biol. 8: 397-403, 2005. Go to original source...
  32. Torres, M.A., Dangl, J.L., Jones, J.D.: Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. - Proc. nat. Acad. Sci. USA 99: 517-522, 2002. Go to original source...
  33. Torres, M.A., Jones, J.D., Dangl, J.L.: Reactive oxygen species signaling in response to pathogens. - Plant Physiol. 141: 373-378, 2006. Go to original source...
  34. Van Loon, L.C., Bakker, P., Pieterse, C.M.J.: Systemic resistance induced by rhizosphere bacteria. - Annu. Rev. Phytopathol. 36: 453-483, 1998. Go to original source...
  35. Wang, Y., Nishimura, M.T., Zhao, T., Tang, D.: ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. - Plant J. 68: 74-87, 2011. Go to original source...
  36. Wojtaszek, P.: Oxidative burst: an early plant response to pathogen infection. - Biochem. J. 322: 681-692, 1997. Go to original source...
  37. Xiong, Y., Contento, A.L., Bassham, D.C.: AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. - Plant J. 42: 535-546, 2005. Go to original source...
  38. Xiong, Y., Contento, A.L., Nguyen, P.Q., Bassham, D.C.: Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. - Plant Physiol. 143: 291-299, 2007. Go to original source...
  39. Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., Ohsumi, Y., Shirasu, K.: autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. - Plant Cell 21: 2914-2927, 2009. Go to original source...
  40. Yun, L.J., Chen, W.L.: SA and ROS are involved in methyl salicylate-induced programmed cell death in Arabidopsis thaliana. - Plant Cell Rep. 30: 1231-1239, 2011. Go to original source...