biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 59:596-600, 2015 | DOI: 10.1007/s10535-015-0510-5

Effect of salinity on polyamines and ethylene in Atriplex prostrata and Plantago coronopus

M. Bueno1,*, Ma. L. Lendínez1, C. Aparicio1, Ma. P. Cordovilla1
1 Department of Animal Biology, Plant Biology and Ecology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain

The aim of this study was to investigate the effects of salinity on germination, seedling growth, free polyamines (putrescine, spermidine, and spermine), and ethylene metabolism of two species (Atriplex prostrata Bouchér and Plantago coronopus L.) with different salt sensitivities. Seeds collected from Barranco Hondo (salt marshes, Jaén, southern Spain) were germinated at 0, 50, 100, and 200 mM NaCl in a growth chamber. The germination of P. coronopus seeds decreased considerably with an increasing NaCl concentration, however, seeds of A. prostrata showed high germination percentages (84, 87, and 80 %) at 0 (control), 50, and 100 mM NaCl, respectively, and only at 200 mM NaCl, the germination was reduced to 25 %. In the early phase of vegetative growth (8-d-old seedlings), the fresh mass increased in A. prostrata at 50 and 100 mM NaCl but the fresh mass of P. coronopus showed no significant differences. With respect to polyamines, there was a decrease of the putrescine and spermidine content at all the NaCl treatments, however, the spermine content increased and was much higher in P. coronopus than in A. prostrata. The ethylene, 1-aminocyclopropane-1-carboxylic acid content, and the 1-amino-cyclopropane-1-carboxylic acid synthase activity increased with the increasing NaCl concentration in A. prostrata, and only the ethylene content in P. coronopus. These results indicate that P. coronopus increased the free spermine content, whereas A. prostrata increased the ethylene biosynthetic pathway in order to survive in the saline conditions.

Keywords: ACC; ACS; germination; growth regulators; halophyte; NaCl; putrescine; spermidine; spermine
Subjects: polyamines; ethylene; salinity; putrescine; spermidine; spermine

Received: July 4, 2014; Revised: January 12, 2015; Accepted: January 27, 2015; Published: September 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Bueno, M., Lendínez, M.L., Aparicio, C., & Cordovilla, M.P. (2015). Effect of salinity on polyamines and ethylene in Atriplex prostrata and Plantago coronopus. Biologia plantarum59(3), 596-600. doi: 10.1007/s10535-015-0510-5
Download citation

References

  1. Baskin, C.C., Baskin, J.M. (ed.): Seeds. Ecology, Biogeography and Evolution of Dormancy and Germination. - Academic Press, San Diego - London - Boston - New York - Sydney - Tokyo - Toronto 2001.
  2. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  3. Chai, Y.Y., Jiang, C.D., Shi, L., Shi, T.S., Gu, W.B.: Effects of exogenous spermine on sweet sorghum during germination under salinity. - Biol. Plant. 54:145-148, 2010. Go to original source...
  4. Chi, G.L., Pua, E.C., Goh, C.J.: Role of ethylene on de novo shoot regeneration from cotyledonary explants of Brassica campestris ssp. pekinesis (Lour) Olsson in vitro. - Plant Physiol. 96: 178-183, 1991. Go to original source...
  5. Ellouzi, H., Hamed, K.B., Cela, J., Munne-Bosch, S., Abdelly, C.: Early effects of salt stress on the physiological and oxidative status of Cakile maritime (halophyte) and Arabidopsis thaliana (glycophyte). - Physiol. Plant. 142: 128-143, 2011. Go to original source...
  6. Hassine, A.B., Ghanem, M.E., Bouzid, S., Lutts, S.: An inland and a coastal population of the Mediterranean xerohalophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycine-betaine in response to salinity and water stress. - J. exp. Bot. 59: 1315-1326, 2008. Go to original source...
  7. Jiménez-Bremont, J.F., Ruiz, O.A., Rodríguez-Kessler, M.: Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. - Plant Physiol. Biochem. 45: 812-821, 2007. Go to original source...
  8. Khan, M.A., Gul, B.: Halophyte seed germination. - In Khan, M.A., Weber, D.J. (ed.): Ecophysiology of High Salinity Tolerant Plants. Pp. 11-30. Springer, Dordrecht 2006. Go to original source...
  9. Kaur-Sawhney, R., Tiburcio, A.F., Altabella, T., Galston, A.: Polyamines in plants: an overview. - J. cell. mol. Biol. 2: 1-12, 2003.
  10. Le Houérou, H.N.: The role of saltbushes (Atriplex spp.) in arid land rehabilitation in the Mediterranean Basin: a review. - Agroforest. Syst. 18: 107-148, 1992. Go to original source...
  11. Li, X., Zhang, X., Song, J., Fan, H., Feng, G., Wang, B.: Accumulation of ions during seed development under controlled saline conditions of two Suaeda salsa populations in related to their adaptation to saline environments. - Plant Soil 341: 99-107, 2011. Go to original source...
  12. Lin, Z., Zhong, S., Grierson, D.: Recent advances in ethylene research. - J. exp. Bot. 60: 3311-3336, 2009. Go to original source...
  13. Lizada, M.C., Yang, S.F.: A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. - Anal. Biochem. 100: 140-145, 1979. Go to original source...
  14. Maiale, S., Sánchez, D.H., Guira do, A., Vidal, A., Ruiz, O.A.: Spermine accumulation under salt stress. - J. Plant Physiol. 16: 35-42, 2004. Go to original source...
  15. Mallik, S., Nayak, M., Sahu, B.B., Panigrahi, A.K., Shaw, B.P.: Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. - Biol. Plant. 55: 191-195, 2011. Go to original source...
  16. Matilla, A.J., Matilla-Vázquez, M.A.: Involvement of ethylene in seed physiology. - Plant Sci. 175: 87-97, 2008. Go to original source...
  17. Megdiche, W., Amor, N.B., Debez, A., Hessini, K., Ksouri, R., Zuily-Fodil, Y., Abdelly, C.: Salt tolerance of the annual halophyte Cakile maritime as affected by the provenance and the developmental stage. - Acta Physiol. Plant. 29: 375-384, 2007. Go to original source...
  18. Metha, R.A., Cassol, T., Li, N., Ali, N., Handa, A.K., Mattoo, A.K.: Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality and vine life. - Natur. Biotechol. 20: 613-618, 2002. Go to original source...
  19. Pandey, S., Ranade, S.A., Nagar, P.K., Kumar, N.: Role of PAs and ethylene as modulators of plant senescence. - J. Biosci. 25: 291-299, 2000. Go to original source...
  20. Quinet, M., Ndayiragije, A., Lefèvre, I., Lambillotte, B., Dupont-Gillian, C.C., Lutts, S.: Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. - J. exp. Bot. 61: 2719-2733, 2010. Go to original source...
  21. Sánchez-Calle, I.M., Delgado, M.M., Bueno, M., Diaz-Miguel, M., Matilla, A.J.: The relationship between ethylene production and cell elongation during the inicial growth period of chick-pea seeds (Cicer arietinum). - Physiol. Plant. 76: 569-574, 1989. Go to original source...
  22. Sannazzaro, A.I., Echevarría, M., Albertó, E.O., Ruiz, O.A., Menéndez, A.B.: Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. - Plant Physiol. Biochem. 45: 39-46, 2007. Go to original source...
  23. Smith, M.A., Davies, P.J.: Separation and quantification of polyamines in plant tissue by high performance liquid chromatography of their dansyl derivatives. - Plant Physiol. 78: 89-91, 1985. Go to original source...
  24. Tang, W., Newton, R.J.: Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. - Plant Growth Regul. 46: 31-43, 2005. Go to original source...
  25. Türkan, I., Demiral, T.: Recent s developments in understanding salinity tolerance: a review. - Environ. exp. Bot. 67: 2-9, 2009. Go to original source...
  26. Vicente, O., Boscaiu, M., Naranjo, M.A., Estrelles, E., Bellés, J.M., Soriano, P.: Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). - J. arid Environ. 58: 463-481, 2004. Go to original source...
  27. Wang, H.H., Liang, X.L., Wan, Q., Wang, X.M., Bi, Y.R.: Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. - Planta 230: 293-307, 2009. Go to original source...
  28. Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Miyazaki, A., Takahashi, T., Michael, A., Kusano, T.: The polyamine spermine protects against high salt stress in Arabidopsis thaliana. - FEBS Lett. 580: 6783-6788, 2006. Go to original source...
  29. Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Takahashi, T., Michael, A.J., Kusano, T.A.: Protective role for the polyamine spermine against drought stress in Arabidopsis. - Biochem. biophys. Res. Commun. 352: 486-490, 2007. Go to original source...
  30. Yang, S.F., Hoffman, N.E.: Ethylene biosynthesis and its regulation in higher plants. - Annu. Rev. Plant Physiol. 35: 155-189, 1984. Go to original source...
  31. Yang, L., Zu, Y.G., Tang, Z.H.: Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. - Environ. exp. Bot. 86: 60-69, 2013. Go to original source...
  32. Yoshida, M., Tanaka, T.: Studies on genus Plantago growing in Turkey. 1. Morphological comparison of leaf of the wild species. - Natur. Med. 51: 431-441, 1997.
  33. Zapata, P.J., Botella, M.A., Pretel, M.T., Serrano, M.: Responses of ethylene biosynthesis to saline stress in seedlings of eight plant species. - Plant Growth Regul. 53: 97-106, 2007. Go to original source...
  34. Zapata, P.J., Serrano, M., Pretel, M.T., Amorós, A., Botella, M.A.: Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination. - Plant Sci. 164: 557-563, 2003. Go to original source...
  35. Zapata, P.J., Serrano, M., Pretel, M.T., Amorós, A., Botella, M.A.: Polyamines and ethylene changes during germination of different plant species under salinity. - Plant Sci. 167: 781-788, 2004. Go to original source...
  36. Zapata, P.J., Serrano, M., Pretel, M.T., Botella, M.A.: Changes in free polyamines concentration induced by salt stress in seedlings of different species. - Plant Growth Regul. 56: 167-177, 2008. Go to original source...