biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 59:601-608, 2015 | DOI: 10.1007/s10535-015-0537-7

Signal transduction during aluminum-induced secretion of organic acids in plants

H. He1,2,*, L. He2, M. Gu2
1 Cash Crops Research institute, Guangxi Academy of Agricultural Sciences, Nanning, P.R. China
2 College of Agronomy, Guangxi University, Nanning, P.R. China

An excess of aluminum (Al) is a major factor limiting crop production in acidic soils. Secretion of organic acids (OAs) from the root apex of diverse plant species or genotypes via activation of anion channels has been recognized as the most important mechanism of Al exclusion. Citric, oxalic, and malic acids are the most effective OAs in detoxifying Al. In this review, we summarize biochemical properties of OAs secreted by plants. We also highlight the molecular mechanisms of Al signal perception, Al transport, signal regulators associated with OAs secretion, as well as interactions between Al and hormone signaling pathways. Based on a comprehensive understanding of the relationship between signal modulators and regulation of expression of relevant genes, a signal transduction model for Al-induced OAs secretion is proposed.

Keywords: abscisic acid; Al detoxification; Al tolerance mechanism; salicylic acid; signal transduction
Subjects: aluminum; organic acids; secretion; abscisic acid; salicylic acid; stress signaling

Received: February 17, 2014; Revised: April 18, 2015; Accepted: May 25, 2015; Published: December 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
He, H., He, L., & Gu, M. (2015). Signal transduction during aluminum-induced secretion of organic acids in plants. Biologia plantarum59(4), 601-608. doi: 10.1007/s10535-015-0537-7
Download citation

References

  1. Blancaflor, E.B., Jones, D.L., Gilroy, S.: Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. - Plant Physiol. 118: 159-172, 1998. Go to original source...
  2. Clarkson, D.T.: The effect of aluminium and some trivalent metal cations on cell division in the root apices of Allium cepa. - Ann. Bot. 29: 309-315, 1965. Go to original source...
  3. Collins, N.C., Shirley, N.J., Saeed, M., Pallotta, M., Gustafson, J.P.: An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). - Genetics 179: 669-682, 2008. Go to original source...
  4. Delhaize, E., Gruber, B.D., Ryan, P.R.: The roles of organic anion permeases in aluminium resistance and mineral nutrition. - FEBS Lett. 581: 2255-2262, 2007. Go to original source...
  5. Delhaize, E., Ryan, P.R., Hebb, D.M., Yamamoto, Y., Sasaki, T., Matsumoto, H.: Engineering high-level aluminum tolerance in barley with the ALMT1 gene. - Proc. nat. Acad. Sci. USA 101: 15249-15254, 2004. Go to original source...
  6. Delhaize, E., Ryan, P.R., Randall, P.J.: Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. - Plant Physiol. 103: 695-702, 1993. Go to original source...
  7. Gielen, H., Remans, T., Vangronsveld, J., Cuypuers, A.: MicroRNAs in metal stress: specific roles or secondary responses? - Int. J. mol. Sci. 13: 15826-15847, 2012. Go to original source...
  8. Gunse, B., Poschenrieder, C., Barcelo, J.: The role of ethylene metabolism in the short-term responses to aluminum by roots of two maize cultivars different in Al-resistance. - Environ. exp. Bot. 43: 73-81, 2000. Go to original source...
  9. Hayes, J.E., Ma, J.F.: Al-induced efflux of organic acid anions is poorly associated with internal organic acid metabolism in triticale roots. - J. exp. Bot. 388: 1753-1759, 2003. Go to original source...
  10. He, H., He, L., Gu, M.: Role of microRNAs in aluminum stress in plants. - Plant Cell Rep. 33: 831-836, 2014. Go to original source...
  11. He, H., Zhan, J., He, L., Gu, M.: Nitric oxide signaling in aluminum stress in plants. - Protoplasma 249: 483-492, 2012. Go to original source...
  12. Hoekenga, O., Vision, T.J., Shaff, J.E., Monforte, A.J., Lee, G.P., Howell, S.H., Kochian, L.V.: Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta × Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. - Plant Physiol. 132: 936-948, 2003. Go to original source...
  13. Hoekenga, O.A., Maron, L.G., Pineros, M.A., Cancado, G.M., Shaff, J., Kobayashi, Y., Ryan, P.R., Dong, B., Sasaki, T., Matsumoto, H., Yamamoto, Y., Koyama, H., Kochian, L.V.: AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. - Proc. nat. Acad. Sci. USA 103: 9738-9743, 2006. Go to original source...
  14. Horst, W.J., Schmohl, N., Kollmeier, M., Baluska, F., Sivaguru, M.: Does aluminum affect root growth of maize through interaction with the cell wall-plasma membrane-cytoskeleton continuum? - Plant Soil 215: 163-174, 1999. Go to original source...
  15. Huang, C.F., Yamaji, N., Chen, Z., Ma, J.F.: A tonoplastlocalized half-size ABC transporter is required for internal detoxification of aluminum in rice. - Plant J. 69: 857-867, 2012. Go to original source...
  16. Huang, C.F., Yamaji, N., Ma, J.F.: Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis. - Plant Physiol. 153: 1669-1677, 2010. Go to original source...
  17. Huang, C.F., Yamaji, N., Mitani, N., Yano, M., Nagamura, Y., Ma, J.F.: A bacterial-type ABC transporter is involved in aluminum tolerance in rice. - Plant Cell 21: 655-667, 2009. Go to original source...
  18. Iuchi, S., Koyama, H., Iuchi, A., Kobayashi, Y., Kitabayasgi, S., Kobayashi, Y., Ikka, T., Hirayama, T., Shinozaki, K., Kobayashi, M.: Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. - Proc. nat. Acad. Sci. USA 104: 9900-9905, 2007. Go to original source...
  19. Jones, D.L., Kochian, L.V.: Aluminum inhibition of the inositol 1,4,5-trisphosphate signal transduction pathway in wheat roots: a role in aluminum toxicity? - Plant Cell 7: 1913-1922, 1995. Go to original source...
  20. Kasai, M., Sasaki, M., Tanakamaru, S., Yamamoto, Y., Matsumoto, H.: Possible involvement of abscisic acid in increases in activities of two vacuolar H+-pumps in barley roots under aluminum stress. - Plant Cell Physiol. 34: 1335-1338, 1993.
  21. Kochian, L.V.: Cellular mechanisms of aluminum toxicity and resistance in plants. - Annu. Rev. Plant Physiol. Plant mol. Biol. 46: 237-260, 1995. Go to original source...
  22. Kochian, L.V., Hoekenga, O.A., Pineros, M.A.: How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. - Annu Rev Plant Biol. 55: 459-493, 2004. Go to original source...
  23. Kollmeier, M., Dietrich, P., Bauer, C.S., Horst, W.J., Hedrich, R.: Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. - Plant Physiol. 126: 397-410, 2001. Go to original source...
  24. Kollmeier, M., Felle, H.H., Horst, W.J.: Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? - Plant Physiol. 122: 945-956, 2000. Go to original source...
  25. Kovermann, P., Meyer, S., Hörtensteiner, S., Picco, C., Scholz-Starke, J., Ravera, S., Lee, Y., Martinoia, E.: The Arabidopsis vacuolar malate channel is a member of the ALMT family. - Plant J. 52: 1169-1180, 2007. Go to original source...
  26. Larsen, P.B., Geisler, M.J., Jones, C.A., Williams, K.M., Cancel, J.D.: ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. - Plant J. 41: 353-363, 2005. Go to original source...
  27. Larsen, P.B., Cancel, J., Rounds, M., Ochoa, V.: Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. - Planta 225: 1447-1458, 2007. Go to original source...
  28. Li, X.F., Ma, J.F., Matsumoto, H.: Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. - Plant Physiol. 123: 1537-1543, 2000. Go to original source...
  29. Ligaba, A., Katsuhara, M., Ryan, P.R., Shibasaka, M., Matsumoto, H.: The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. - Plant Physiol. 142: 1294-1303, 2006. Go to original source...
  30. Ligaba, A., Kochian, L., Pineros, M.: Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat. - Plant J. 60: 411-423, 2009. Go to original source...
  31. Liu, J.P., Magalhaes, J.V., Shaff, J., Kochian, L.V.: Aluminumactivated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. - Plant J. 57: 389-399, 2009. Go to original source...
  32. Liu, J.P., Pineros, M.A., Kochian, L.V.: The role of aluminum sensing and signaling in plant aluminum resistance. - J. integr. Plant Biol. 56: 221-230, 2014. Go to original source...
  33. Ma, J.F.: Role of organic acids in detoxification of aluminum in higher plants. - Plant Cell Physiol. 41: 383-390, 2000. Go to original source...
  34. Ma, Z., Miyasaka, S.C.: Oxalate exudation by taro in response to Al. - Plant Physiol. 118: 861-865, 1998. Go to original source...
  35. Magalhaes, J.V., Liu, J.P., Guimaraes, C., Lana, U.G.P., Alves, V.M.C., Wang, Y.H., Schaffert, R.E., Hoekenga, O.A., Pineros, M.A., Shaff, J.E., Klein, P.E., Carneiro, N.P., Coelho, C.M., Trick, H.N., Kochian, L.V.: A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. - Natur. Genet. 39: 1156-1161, 2007. Go to original source...
  36. Maron, L.G., Pineros, M.A., Guimaraes, C.T., Magalhaes, J.V., Pleiman, J.K., Mao, C., Shaff, J., Belicuas, S.N., Kochian, L.V.: Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. - Plant J. 61: 728-740, 2010. Go to original source...
  37. Minocha, R., Long, S.: Simultaneous separation and quantitation of amino acids and polyamines of forest tree tissues and cell cultures within a single high-performance liquid chromatography run using dansyl derivatization. - J. Chromatogr. 1035: 63-73, 2004. Go to original source...
  38. Pan, W.L., Jackson, W.A., Hopkins, A.G.: Aluminum inhibition of shoot lateral branches of Glycine max and reversal by exogenous cytokinin. - Plant Soil 120: 1-9, 1989. Go to original source...
  39. Pineros, M., Kochian, L.V.: A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize, dentification and characterization of Al-induced anion channels. - Plant Physiol. 125: 292-305, 2001. Go to original source...
  40. Pineros, M., Magalhaes, J.V., Carvalho Alves, V.M., Kochian, L.V.: The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation on maize. - Plant Physiol. 129: 1194-1206, 2002. Go to original source...
  41. Poot-Poot, W., Hernandez-Sotomayor, S.M.T.: Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications. - IUBMB Life 63: 864-872, 2011. Go to original source...
  42. Ryan, P.R., Delhaize, E., Randall, P.J.: Characterisation of Alstimulated efflux of malate from the apices of Al-tolerant wheat roots. - Planta 196: 103-110, 1995. Go to original source...
  43. Ryan, P.R., Skerrett, M., Findlay, G.P., Delhaize, E., Tyerman, S.D.: Aluminum activates an anion channel in the apical cells of wheat roots. - Proc. nat. Acad. Sci. USA 94: 6547-6552, 1997. Go to original source...
  44. Ryan, P.R., Raman, H., Gupta, S., Horst, W.J., Delhaize, E.: A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. - Plant Physiol. 149: 340-351, 2009. Go to original source...
  45. Ryan, P.R., Tyerman, S.D., Sasaki, T., Furuichi, T., Yamamoto, Y., Zhang, W.H., Delhaize, E.: The identification of aluminum-resistance genes provides opportunities for enhancing crop production on acid soils. - J. exp. Bot. 62: 9-20, 2011. Go to original source...
  46. Saber, N.E., Abdel-Moneim, A.M., Barakat, S.Y.: Role of organic acids in sunflower tolerance to heavy metals. - Biol. Plant. 42: 65-73, 1999. Go to original source...
  47. Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S.J., Ryan, P.R., Delhaize, E., Matsumoto, H.: A wheat gene encoding an aluminum-activated malate transporter. - Plant J. 37: 645-653, 2004. Go to original source...
  48. Sawaki, Y., Iuchi, S., Kobayashi, Y., Kobayashi, Y., Ikka, T., Sakurai, N., Fujita, M., Shinozaki, K., Shibata, D., Kobayashi, M., Koyama, H.: STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. - Plant Physiol. 150: 281-294, 2009. Go to original source...
  49. Shen, H., He, L.F., Sasaki, T., Yamamoto, Y., Zheng, S.J., Ligaba, A., Yan, X.L., Ahn, S.J., Yamaguchi, M., Sasakawa, H., Matsumoto, H.: Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. - Plant Physiol. 138: 287-296, 2005. Go to original source...
  50. Shen, H., Ligaba, A., Yamaguchi, M., Osawa, H., Shibata, K., Yan, X.L., Matsumoto, H.: Effect of K-252a and abscisic acid on the efflux of citrate from soybean roots. - J. exp. Bot. 55: 663-671, 2004. Go to original source...
  51. Sivaguru, M., Ezaki, B., He, Z.H., Tong, H., Osawa, H., Baluska, F., Volkmann, D., Matsumoto, H.: Aluminuminduced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. - Plant Physiol. 132: 2256-2266, 2003a. Go to original source...
  52. Sivaguru, M., Pike, S., Gassmann, W., Bashin, T.I.: Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. - Plant Cell Physiol. 44: 667-675, 2003b. Go to original source...
  53. Sussman, M.R.: Molecular analysis of proteins in the plant plasma membrane. - Annu. Rev. Plant Physiol. Plant mol. Biol. 45: 211-234, 1994. Go to original source...
  54. Tian, Q.Y., Sun, D.H., Zhao, M.G., Zhang, W.H.: Inhibition of nitric oxide synthase (NOS) underlines aluminum-induced inhibition of root elongation in Hibiscus moscheutos. - New Phytol. 174: 322-331, 2007. Go to original source...
  55. Tsutsui, T., Yamaji, N., MA, J.F.: Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. - Plant Physiol. 156: 925-931, 2011. Go to original source...
  56. Wang, Y.S., Yang, Z.M.: Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots Cassia tora L. - Plant Cell Physiol. 46: 1915-1923, 2005. Go to original source...
  57. Xia, J., Yamaji, N., Kasai, T., Ma, J.F.: Plasma membranelocalized transporter for aluminum in rice. - Proc. nat. Acad. Sci. USA 107: 18381-18385, 2010. Go to original source...
  58. Xue, Y.J., Tao, L., Yang, Z.M.: Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. - J. Agr. Food Chem. 56: 9676-9684, 2008. Go to original source...
  59. Yamaji, N., Huang, C.F., Nagao, S., Yano, M., Sato, Y., Nagamura, Y., Ma, J.F.: A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. - Plant Cell 21: 3339-3349, 2009. Go to original source...
  60. Yang, J.L., You, J.F., Li, Y.Y., Wu, P., Zheng, S.J.: Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity. - Plant Cell Physiol. 48: 66-73, 2007. Go to original source...
  61. Yang, J.L., Zhang, L., Li, Y.Y., You, J.F., Wu, P., Zheng, S.J.: Citrate transporters play a critical role in aluminumstimulated citrate efflux in rice bean (Vigna umbellata) roots. - Ann. Bot. 97: 579-584, 2006. Go to original source...
  62. Yang, J.L., Zheng, S.J., He, Y.F., Matsumoto, H.: Aluminum resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly under Al stress. - J. exp. Bot. 56: 1197-1203, 2005. Go to original source...
  63. Yang, Z.M., Nian, H., Sivaguru, M., Tanakamaru, S., Matsumoto, H.: Characterization of aluminum-induced citrate secretion in aluminum-tolerant soybean (Glycine max) plants. - Physiol. Plant. 113: 64-71, 2001. Go to original source...
  64. Yang, Z.M., Wang, J., Wang, S.H., Xu, L.L.: Salicylic acidinduced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. - Planta 217: 168-174, 2003. Go to original source...
  65. Yang, Z.M., Yang, H., Wang, J., Wang, Y.S.: Aluminum regulation of citrate metabolism for Al-induced citrate efflux in the roots of Cassia tora L. - Plant Sci. 166: 1589-1594, 2004. Go to original source...
  66. Yokosho, K., Yamaji, N., Ma, J.F.: An Al-inducible MATE gene is involved in external detoxification of Al in rice. - Plant J. 68: 1061-1069, 2011. Go to original source...
  67. Yokosho, K., Yamaji, N., Ma, J.F.: Isolation and characterisation of two MATE genes in rye. - Funct. Plant Biol. 37: 296-303, 2010. Go to original source...
  68. Zhang, W.H., Ryan, P.R., Tyerman, S.D.: Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. - Plant Physiol. 125: 1459-1472, 2001. Go to original source...
  69. Zhao, Z., Ma, J.F., Sato, K., Takeda, K.: Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). - Planta 217: 794-800, 2003. Go to original source...
  70. Zheng, S.J., Ma, J.F., Matsumoto, H.: High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. - Plant Physiol. 117: 745-751, 1998. Go to original source...