biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 60:427-434, 2016 | DOI: 10.1007/s10535-016-0617-3

Characterization and expression analysis of conserved miRNAs and their targets in Pinus densata

Z.-B. Qiu1,*, M.-M. Yuan1, B.-Z. Hai1, L. Wang1, L. Zhang1
1 College of Life Science, Henan Normal University, Xinxiang, P.R. China

MicroRNAs (miRNAs) are small non-coding RNAs that play crucial regulatory roles in diverse developmental processes via cleavage or translational inhibition of their target mRNAs. Although a growing number of miRNAs and their targets have been predicted and discovered via experimentation in many plants, little is known about conserved miRNAs and their target genes in Pinus densata. In the present study, the conserved miRNAs, miR171 and miR482, from Pinus densata were characterized. Analysis of miR171 and miR482 reveal that these miRNAs were highly conserved in other plant species. In addition, the precursors of miR171 and miR482 were validated by real time-PCR and sequencing. Using real-time quantitative PCR, miR171 and miR482 as well as their corresponding targets were found to be differentially expressed in needles, stems, and roots of Pinus densata. Furthermore two target genes, one GRAS family transcription factor protein gene and one nucleotide-binding site leucine-rich repeat (NBS-LRR) resistance protein gene, were experimentally verified to be the targets of pde-miR171 and pde-miR482, respectively, using RNA ligase-mediated 5'-rapid amplification of cDNA ends (RLM-RACE).

Keywords: resistance protein; RLM-RACE; real time-qPCR; transcription factor
Subjects: expression analysis; miRNA; target genes; RLM-RACE; transcription factor; phylogenetic tree

Received: June 14, 2015; Revised: October 16, 2015; Accepted: November 3, 2015; Published: September 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Qiu, Z.-B., Yuan, M.-M., Hai, B.-Z., Wang, L., & Zhang, L. (2016). Characterization and expression analysis of conserved miRNAs and their targets in Pinus densata. Biologia plantarum60(3), 427-434. doi: 10.1007/s10535-016-0617-3
Download citation

Supplementary files

Download filebpl-201603-0004_S1.pdf

File size: 641.68 kB

References

  1. Asha, S., Nisha, J., Soniya, E.V.: In silico characterisation and phylogenetic analysis of two evolutionarily conserved miRNAs (miR166 and miR171) from black pepper (Piper nigrum L.). - Plant mol. Biol. Rep. 31: 707-718, 2013. Go to original source...
  2. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. - Cell 116: 281-297, 2004. Go to original source...
  3. Bonnet, E., Wuyts, J., Rouze, P., Van de Peer, Y.: Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identify important target genes. - Proc. natl. Acad. Sci. USA 101: 11511-11516, 2004. Go to original source...
  4. Chen, X.: A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. - Science 303: 2022-2025, 2004. Go to original source...
  5. Chen, X.: Small RNAs and their roles in plant development. - Ann. Rev. cell. dev. Biol. 25: 21-44, 2009. Go to original source...
  6. Chuck, G., Candela, H., Hake, S.: Big impacts by small RNAs in plant development. - Curr. Opin. Plant Biol. 12: 81-86, 2009. Go to original source...
  7. Curaba, J., Talbot, M., Li, Z.Y., Helliwell, C.: Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. - BMC Plant Biol. 13: 6, 2013. Go to original source...
  8. Finnegan, E.J., Matzke, M.A.: The small RNA world. - J. cell. Sci. 116: 4689-4693, 2003. Go to original source...
  9. Jones-Rhoades, M.W., Bartel, D.P., Bartel, B.: MicroRNAs and their regulatory roles in plants. - Ann. Rev. Plant Biol. 57: 19-53, 2006. Go to original source...
  10. Li, H., Deng, Y., Wu, T.L., Subramanian, S., Yu, O.: Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. - Plant Physiol. 153: 1759-1770, 2010. Go to original source...
  11. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. - Methods 25: 402-408, 2001. Go to original source...
  12. Lu, S.F., Sun, Y.H., Amerson, H., Chiang, V.L.: MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. - Plant J. 51: 1077-1098, 2007. Go to original source...
  13. Lu, S.F., Sun, Y.H., Shi, R., Clark, C., Li, L.G., Chiang, V.L.: Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. - Plant Cell 17: 2186-2203, 2005. Go to original source...
  14. Mallory, A.C., Dugas, D.V., Bartel, D.P., Bartel, B.: MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative and floral organs. - Curr. Biol. 14: 1035-1046, 2004. Go to original source...
  15. Meyers, B.C., Axtell, M.J., Bartel, B., Bartel, D.P., Baulcombe, D., Bowman, J.L., Cao, X., Carrington, J.C., Chen, X., Green, P.J., Griffiths-Jones, S., Jacobsen, S.E., Mallory, A.C., Martienssen, R.A., Poethig, R.S., Qi, Y., Vaucheret, H., Voinnet, O., Watanabe, Y., Weigel, D., Zhu, J.K.: Criteria for annotation of plant microRNAs. - Plant Cell 20: 3186-3790, 2008. Go to original source...
  16. Parizotto, E.A., Dunoye, P., Rahm, N., Himber, C., Vionnet, O.: In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. - Genes Dev. 18: 2237-2242, 2004. Go to original source...
  17. Patanun, O., Lertpanyasampatha, M., Sojikul, P., Viboonjun, U., Narangajavana, J.: Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.). - Mol. Biotechnol. 53: 257-269, 2013. Go to original source...
  18. Qiu, Z.B., Li, X.J., Zhao, Y.Y., Zhang, M.M., Wan, Y.L., Cao, D.C., Lu, S.F., Lin, J.X.: Genome-wide analysis reveals dynamic changes in microRNAs expression during vascular cambium development in Chinese fir (Cunninghamia lanceolata). - J. exp. Bot. 66: 3041-3054, 2015. Go to original source...
  19. Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., Bartel, D.P.: MicroRNAs in plants. - Genes Dev. 16: 1616-1626, 2002. Go to original source...
  20. Rogers, K., Chen, X.: Biogenesis, turnover, and mode of action of plant microRNAs. - Plant Cell 25: 2383-2399, 2013. Go to original source...
  21. Shivaprasad, P.V., Chen, H.M., Patel, K., Bond, D.M., Santos, B.M., Baulcombe, D.C.: A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. - Plant Cell 24: 859-874, 2012. Go to original source...
  22. Song, C.N., Wang, C., Zhang, C.Q., Nicholas, K.K., Yu, H.P., Ma, Z.Q., Fang, J.G.: Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). - BMC Genomics 11: 431-442, 2010. Go to original source...
  23. Subramanian, S., Fu, Y., Sunkar, R., Barbazuk, W.B., Zhu, J.K., Oliver, Y.: Novel and nodulation-regulated microRNAs in soybean roots. - BMC Genomics 9: 160, 2009. Go to original source...
  24. Sun, G.L.: microRNAs and their diverse functions in plants. - Plant mol. Biol. 80: 17-36, 2012. Go to original source...
  25. Taylor, R.S., Tarver, J.E., Hiscock, S.J., Donoghue, P.C.: Evolutionary history of plant microRNAs. - Trends Plant Sci. 19: 175-182, 2014. Go to original source...
  26. Voinnet, O.: Origin, biogenesis, and activity of plant microRNAs. - Cell 136: 669-687, 2009. Go to original source...
  27. Wan, L.C., Zhang, H.Y., Lu, S.F., Zhang, L., Qiu, Z.B., Zhao, Y.Y., Zeng, Q.Y., Lin, J.X.: Transcriptome-wide identification and characterization of miRNAs from Pinus densata. - BMC Genomics 13: 132, 2012. Go to original source...
  28. Wang, B., Mao, J.F., Gao, J., Zhao, W., Wang, X.R.: Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata. - Mol. Ecol. 18: 3796-3811, 2011. Go to original source...
  29. Wang, L., Mai, Y.X., Zhang, Y.C., Luo, Q., Yang, H.Q.: MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. - Mol. Plant 3: 794-806, 2010. Go to original source...
  30. Wei, L.Q., Yan, L.F., Wang, Tai.: Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. - Genome Biol. 12: R53, 2011. Go to original source...
  31. Yao, Y., Guo, G., Ni, Z., Sunkar, R., Du, J., Zhu, J.K., Sun, Q.: Cloning and characterisation of microRNAs from wheat (Triticum aestivum L.). - Genome Biol. 8: R96, 2007. Go to original source...
  32. Yin, Z., Li, C., Han, X., Shen, F.: Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). - Gene 414: 60-66, 2008. Go to original source...
  33. Zhang, B.H., Pan, X.P., Cox, S.B., Cobb, G.P., Anderson, T.A.: Evidence that miRNAs are different from other RNAs. - Cell Mol. Life Sci. 63: 246-254, 2006. Go to original source...
  34. Zhang, Y.: miRU: an automated plant miRNA target prediction server. - Nucl. Acids Res. 33: W701-W704, 2005. Go to original source...
  35. Zhu, Q.H., Fan, L.J., Liu, Y., Xu, H., Llewellyn, D., Wilson, I.: miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. - PLoS ONE 12: e84390, 2013. Go to original source...