biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 60:603-618, 2016 | DOI: 10.1007/s10535-016-0648-9

Some key physiological and molecular processes of cold acclimation

R. John1, N. A. Anjum2, S. K. Sopory3, N. A. Akram4,*, M. Ashraf5
1 Department of Botany, University of Kashmir, Hazratbal, Srinagar, India
2 CESAM and Department of Chemistry, University of Aveiro, Aveiro, Portugal
3 Jawaharlal Nehru University, New Delhi, India
4 Department of Botany, GC University, Faisalabad, Pakistan
5 Department of Botany & Microbiology, King Saud University, Riyadh, Saudi Arabia

Agricultural production worldwide has been severely impacted by cold and freezing stresses. Plant capacity to acclimate to environmental conditions in their immediate vicinity largely control their survival, growth, and productivity. Molecular as well as biochemical mechanisms underpinning plant cold acclimation are very complex and interwoven. The cold-impacted plants try to modulate expression of variety genes controlling cell membrane lipid composition, mitogen-activated protein kinase cascade, total soluble proteins, polyamines, glycinebetaine, proline, reactive oxygen species (ROS) scavengers, cryoprotectants, and a large number of cold responsive factors. To this end, this paper dissects the array of transcriptional factors/genes down- or up-regulated, their identification in different plant species, recognition of cold tolerant/resistant transgenic plants, complexity of the mitogen-activated protein kinase cascade, as well as their cross talk under different stresses and molecular mechanisms. Furthermore, it also comprehensively elucidates physio-biochemical interferences in cold acclimation with a particular emphasis on endogenous content as well as exogenously supplied different types of polyamines, ROS, and osmoprotectants. Overall, low temperature stress tolerance or cold acclimation varies greatly among species depending on the stress intensity and duration and type of plant species.

Keywords: cryoprotectants; gene expression; glycinebetaine; MAPK; membrane lipids; polyamines; proline; ROS; transcription factors; transgenic plants
Subjects: temperature - low; cold acclimation; saccharides; polyamines; glycine betaine; proline; reactive oxygen species; cold responsive gene; cell membrane stability; gene expression; transcription factors

Received: December 8, 2015; Revised: February 3, 2016; Accepted: March 8, 2016; Published: December 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
John, R., Anjum, N.A., Sopory, S.K., Akram, N.A., & Ashraf, M. (2016). Some key physiological and molecular processes of cold acclimation. Biologia plantarum60(4), 603-618. doi: 10.1007/s10535-016-0648-9
Download citation

Supplementary files

Download filebpl-201604-0001_S1.pdf

File size: 143.07 kB

References

  1. Abavisani, A., Khorshidi, M., Sherafatmandjour, A.: Interaction between cold stress and polyamine on antioxidant properties in dragonhead. - Int. J. Agr. Crop Sci. 5: 2555-2560, 2013.
  2. Abbas, W., Ashraf, M., Akram, N.A.: Alleviation of saltinduced adverse effects in eggplant (Solanum melongena L.) by foliar-applied natural and synthetic glycinebetaine. - Sci. Hort. 125: 188-195, 2010. Go to original source...
  3. Abdel Kader, D.Z., Amal, A.A.H., Elmeleigy, S.A., Dosoky, N.S.: Chilling-induced oxidative stress and polyamines regulatory role in two wheat varieties. - J. Taibah Univ. Sci. 5: 14-24, 2011. Go to original source...
  4. Akram, N.A., Ashraf, M.: Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid (ALA). - J. Plant Growth Regul. 32: 663-679, 2013. Go to original source...
  5. Alcázar, R., Marco. F., Cuevas, J.C., Patron, M., Ferrando, A.: Involvement of polyamines in plant response to abiotic stress. - Biotechnol. Lett. 28: 1867-1876, 2006. Go to original source...
  6. Alcázar, R., Bitrián, M., Bartels, D., Koncz, C., Altabella, T., Tiburcio, A.: Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. - Plant Signal. Behav. 6: 243-250, 2011. Go to original source...
  7. Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P., Tiburcio, A.F.: Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. - Planta 231: 1237-1249, 2010. Go to original source...
  8. Alet, A.I., Sanchez, D.H., Cuevas, J.C.: Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. - Plant Signal. Behav. 6: 278-286, 2011. Go to original source...
  9. Ashraf, M.: Biotechnological approach of improving plant salt tolerance using antioxidants as markers. - Biotechnol. Adv. 27: 84-93, 2009. Go to original source...
  10. Ashraf, M., Akram, N.A., Al-Qurainy, F., Foolad, M.: Drought tolerance: roles of organic osmolytes, growth regulators and mineral nutrients. - Adv. Agron. 111: 249-296, 2011. Go to original source...
  11. Atkinson, N.J., Urwin, P.E.: The interaction of plant biotic and abiotic stresses: from genes to the field. - J. exp. Bot. 63: 3523-3543, 2012. Go to original source...
  12. Bansal, K.C., Goel, D., Singh, A.K., Yadav, V., Babbar, S.B., Murata, N.: Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. - J. Plant Physiol. 168: 286-1294, 2011. Go to original source...
  13. Beck, E.H., Heim, R., Hansen, J.: Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. - J. Biosci. 29: 449-459, 2004. Go to original source...
  14. Beck, E.H., Fettig, S., Knake, C., Hartig, K., Bhattarai, T.: Specific and unspecific responses of plants to cold and drought stress. - J. Biosci. 32: 501-510, 2007. Go to original source...
  15. Benedict, C., Skinner, J.S., Meng, R., Chang, Y., Bhalerao, R., Huner, N.P.A., Finn, C.E., Chen, T.H.H., Hurry, V.: The CBF1-dependent low temperature signalling pathway, regulon, and increase in freeze tolerance are conserved in Populus spp. - Plant Cell Environ. 29: 1259-1272, 2006. Go to original source...
  16. Bitrian, M., Zarza, X., Altabella, T., Tiburcio, A.F., Alcázar, R.: Polyamines under abiotic stress: metabolic crossroads and hormonal cross talks in plants. - Metabolites 2: 516-528, 2012. Go to original source...
  17. Blum, A.: Plant Breeding for Stress Environments. - CRC Press, Boca Raton 1988.
  18. Carvalho, A.L., Cardoso, F.S., Bohn, A., Neves, A.R., Santos, H.: Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Appl. environ. Microbiol. 77: 4189-4199, 2011. Go to original source...
  19. Cavender-Bares, J.: Chilling and freezing stress in live oaks (Quercus section Virentes): intra- and inter-specific variation in PS II sensitivity corresponds to latitude of origin. - Photosynth. Res. 94: 437-453, 2007. Go to original source...
  20. Chen, L.J., Xiang, H.Z., Miao, Y., Zhang, L., Guo, Z.F., Zhao, X.H., Lin, J.W., Li, T.L.: An overview of cold resistance in plants. - J. Agron. Crop Sci. 200: 237-245, 2014. Go to original source...
  21. Chen, N.A., Xu, Y., Wang, X., Du, C., Du, J., Yuan, M.: OsRAN2, essential for mitosis enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress. - Plant Cell Environ. 34: 52-64, 2011. Go to original source...
  22. Chen, Q.F., Xiao, S., Chye, M.L.: Overexpression of the Arabidopsis 10-kDa acyl-CoA-binding protein ACBP6 enhances freezing tolerance. - Plant Physiol. 148: 304-315, 2008. Go to original source...
  23. Cheng, C., Yun, K.Y., Ressom, H.W., Mohanty, B., Bajic, V.B., Jia, Y., Yun, S.J., De los Reyes, B.G.: An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. - BMC Genom. 18: 175, 2007. Go to original source...
  24. Chinnusamy, V., Jagendorf, A., Zhu, J.K.: Understanding and improving salt tolerance in plants. - Crop Sci. 45: 437-448, 2005. Go to original source...
  25. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong.: Ice1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. - Genes Dev. 17: 1043-1054, 2003. Go to original source...
  26. Chinnusamy, V., Schumaker, K., Zhu, J.K.: Molecular genetics perspectives on cross-talk and specificity in abiotic stress signalling in plants. - J. exp. Bot. 55: 225-236, 2004. Go to original source...
  27. Chinnusamy, V., Zhu, J.K., Sunkar, R.: Gene regulation during cold stress acclimation in plants. - Methods mol. Biol. 639: 39-55, 2010. Go to original source...
  28. Chinnusamy, V., Zhu, J., Zhu, J.K.: Cold stress regulation of gene expression in plants. - Trends Plant Sci. 12: 444-451, 2007. Go to original source...
  29. Chowdhury, M.E.K., Choi, B., Cho, B., Kim, J.B., Park, S.U., Natarajan, S., Lim, H., Bae, H.: Regulation of 4CL, encoding 4-coumarate: coenzyme A ligase, expression in kenaf under diverse stress conditions. - Plant Omics J. 6: 254-262, 2013.
  30. Cook, D., Fowler, S., Fiehn, O., Thomashow, M.F.: A prominent role for the CBF cold response pathway in configuring the low temperature metabolome of Arabidopsis. - Proc. nat. Acad. Sci. USA 101: 15243-15248, 2004. Go to original source...
  31. Corcuera, L., Cochard, H., Gil-Pelegrin, E., Notivol, E.: Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism (P50) under severe drought. - Trees 35: 1033-1042, 2011. Go to original source...
  32. Cruz, R.D., Sperotto, R.A., Cargnelutti, D., Adamski, J.M., Terra, T.F., Fett, J.P.: Avoiding damage and achieving cold tolerance in rice plants. - Food Energ. Secur. 2: 96-119, 2013. Go to original source...
  33. Cuevas, J.C., López-Cobollo, R., Ferrando, A.: Putrescine as a signal to modulate the indispensable ABA increase under cold stress. - Plant Signal. Behav 4: 219-220, 2009. Go to original source...
  34. Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y., Liu, J.: A proteomic analysis of cold stress responses in rice seedlings. - Proteomics 5: 3162-3172, 2005. Go to original source...
  35. Dinari, A., Niazi A., Afsharifar, A.R., Ramezani, A.: Identification of upregulated genes under cold stress in cold-tolerant chickpea using the cDNA-AFLP approach. - Plos ONE 8: 527-557, 2013. Go to original source...
  36. Distelbarth, H., Nagele, T., Heyer, A.G.: Responses of antioxidant enzymes to cold and high light are not correlated to freezing tolerance in natural accessions of Arabidopsis thaliana. - Plant Biol. 15: 982-990, 2013. Go to original source...
  37. Doherty, C.J., Van Buskirk, H.A., Myers, S.J., Thomashow, M.F.: Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. - Plant Cell 21: 972-984, 2009. Go to original source...
  38. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, M.K., Yamaguchi-Shinozaki, K.: DREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high-saltand cold-responsive gene expression. - Plant J. 33: 751-763, 2003. Go to original source...
  39. Duncan, D.R., Widholm, J.M.: Proline accumulation and its implication in cold tolerance of regenerable maize callus. - Plant Physiol. 83: 703-708, 1987. Go to original source...
  40. Einset, J. Nielsen, E., Connolly, E.L., Bones, A., Sparstad, T., Winge, P., Zhu, J.K. Membrane-trafficking RabA4c involved in the effect of glycinebetaine on recovery from chilling stress in Arabidopsis. - Physiol. Plant. 130: 511-518, 2007. Go to original source...
  41. Ensminger, I., Busch, F., Huner, N.P.A.: Photostasis and cold acclimation: sensing low temperature through photosynthesis. - Physiol. Plant. 126: 28-44, 2006. Go to original source...
  42. Fan, W. M., Zhang, H., Zhang Zhang, P.: Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. - Plos ONE 7: e37344, 2012. Go to original source...
  43. Feng, D., Liu, B., Li, W., He, Y., Qi, K., Wang, H., Wang, J.: Over-expression of a cold-induced plasma membrane protein gene (MpRCI) from plantain enhances low temperature-resistance in transgenic tobacco. - Environ. exp. Bot. 65: 395-402. 2009. Go to original source...
  44. Feng, X., Zhao, Q., Hao, Y.: The cold-induced basic helix-loophelix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. - BMC Plant Biol. 12: 22, 2012. Go to original source...
  45. Fernandez, A.C., Hamouda, T.B., Iglesias-Guerra, F., Argandona, M., Reina-Bueno M., Nieto J.J., Aouani, M.E. Vargas, C.: Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. - BMC Microbiol. 10: 192, 2010. Go to original source...
  46. Folgado, R., Panis, B., Hausman, J.: Differential protein expression in response to abiotic stress in two potato species: Solanum commersonii Dun and Solanum tuberosum L. - Int. J. mol. Sci. 14: 4912-4933, 2013. Go to original source...
  47. Fowler, D.B.: Cold acclimation threshold induction temperatures in cereals. - Crop Sci. 48: 1147-1154, 2008. Go to original source...
  48. Fowler, D.B., Breton, G., Limin, A.E., Mahfoozi, S., Sarhan, F.: Photoperiod and temperature interactions regulate lowtemperature induced gene expression in barley. - Plant Physiol. 127: 1676-1681, 2001. Go to original source...
  49. Fowler, S., Thomashow, M.F.: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. - Plant Cell 14: 1675-1690, 2002. Go to original source...
  50. Fursova, O.V., Pogorelko, G.V., Tarasov, V.A.: Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. - Gene 429: 98-103, 2009. Go to original source...
  51. Gadjev, I., Vanderauwera, S., Gechev, T.S., Laloi, C., Minkov, I.N., Shulaev, V., Apel, K., Inzé, D., Mittler, R., Breusegem, F.V.: Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. - Plant Physiol. 141: 436-445, 2006. Go to original source...
  52. Gammulla, C.G., Pascovici, D., Atwell, B.J., Haynes, P.A.: Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high- and low-temperature stress. - Proteomics 10: 3001-3019, 2010. Go to original source...
  53. Gerhardt, R., Heldt, H.W.: Measurement of subcellular metabolite levels in leaves by fractionation of freezestopped material in non-aqueous media. - Plant Physiol. 75: 542-547, 1984. Go to original source...
  54. Gill, S.S., Tuteja, N.: Polyamines and abiotic stress tolerance in plants. - Plant Signal. Behav. 5: 26-33, 2010. Go to original source...
  55. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F.: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. - Plant Physiol. 124: 1854-1865, 2000. Go to original source...
  56. Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., Thomashow, M.F.: Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. - Plant J. 16: 433-443, 1998. Go to original source...
  57. Gilmour, S.J., Fowler, S.G., Thomashow, M..: Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. - Plant mol. Biol. 54: 767-781, 2004. Go to original source...
  58. Giri, J.: Glycinebetaine and abiotic stress tolerance in plants. - Plant Signal. Behav. 6: 1746-1751, 2011. Go to original source...
  59. Gleeson, D., Lelu-Walter, M., Parkinson, M.: Influence of exogenous L-proline on embryogenic cultures of larch (Larix leptoeuropaea Dengler), sitka spruce (Picea sitchensis (Bong.) Carr.) and oak (Quercus robur L.) subjected to cold and salt stress. - Ann. Forest Sci. 61: 125-128, 2004. Go to original source...
  60. Gomes, E., Jakobsen, M.K., Axelsen, K.B., Geisler, M., Palmgreen, M.G.: Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative amino phospholipid translocases. - Plant Cell 12: 2441-2453, 2000. Go to original source...
  61. Gorsuch, P.A., Sargeant, A.W., Penfield, S.D., Quick, W.P., Atkin, O.K.: Systemic low temperature signaling in Arabidopsis. - Plant Cell Physiol. 51: 1488-1498, 2010. Go to original source...
  62. Gusta, L., Trischuk, R., Weiser, C.J.: Plant cold acclimation: the role of abscisic acid. - J. Plant Growth Regul. 24: 308-318, 2005. Go to original source...
  63. Guy, C.L.: Cold acclimation and freezing stress tolerance: role of protein metabolism. - Annu. Rev. Plant Physiol. Plant mol. Biol. 41: 187-223, 1990. Go to original source...
  64. Hamel, L.P., Nicole, M.C., Sritubtim, S., Morency, M.J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., Martin, G., Mundy, J., Ohashi, Y., Scheel, D., Sheen, J., Xing, T., Zhang, S., Seguin A., Ellis, B.E.: Ancient signals: Comparative genomics of plant MAPK and MAPKK gene families. - Trends Plant Sci. 11: 192-198, 2006. Go to original source...
  65. Hannah, M.A., Heyer, A.G., Hincha, D.K.: A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. - PloS Genet. 1: e26, 2005. Go to original source...
  66. Hannah, M.A., Wiese, D., Freund, S., Fiehn, O., Heyer, A.G.K., Hincha, D.: Natural genetic variation of freezing tolerance in Arabidopsis. - Plant Physiol. 142: 98-112, 2006. Go to original source...
  67. Hara, M., Terashima, S., Fukaya, T., Kuboi, T.: Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. - Planta 217: 290-298, 2003. Go to original source...
  68. Hayat, S., Hayat, Q., Ahead, A.: Role of proline under changing environments. - Plant Signal. Behav. 7: 1456-1466, 2012. Go to original source...
  69. Heidarvand, L., Maali-Amiri, R.: What happens in plant molecular responses to cold stress. - Acta Physiol. Plant. 32: 419-431, 2010. Go to original source...
  70. Holmstrom, K., Susanne, S., Abul, M., Tapio, E.P., Bjorn, W.: Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. - J. exp. Bot. 343: 177-185, 2000. Go to original source...
  71. Huang, J., Hirji, R., Adam, L., Rozwadowski, K., Hammerlindl, J., Keller, W., Selvaraj, G.: Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. - Plant Physiol. 122: 747-756, 2000. Go to original source...
  72. Huang, J., Sun, S., Xu, D., Lan, H., Sun, H., Wang, Z.: A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). - Plant mol. Biol. 80: 337-350, 2012. Go to original source...
  73. Hummel, I., Bourdais, G., Gouesbet, G., Couee, I., Malmberg, R.L., El-Amrani, A.: Differential gene expression of arginine decarboxylase ADC1 and ADC2 in Arabidopsis thaliana: characterization of transcriptional regulation during seed germination and seedling development. - New Phytol. 163: 519-531, 2004. Go to original source...
  74. Hurry, V.M., Strand, A., Tobiaeson, M., Gardestrom, P., Quist, O.G.: Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. - Plant Physiol. 109: 697-706, 1995. Go to original source...
  75. Imai, A., Matsuyama, T., Hanzawa, Y.: Spermidine synthase genes are essential for survival of Arabidopsis. - Plant Physiol. 135: 1565-1573, 2004. Go to original source...
  76. Imin, N., Kerim, T., Rolfe, B.G., Weinman, J.J.: Effect of early cold stress on the maturation of rice anthers. - Proteomics 4: 1873-1882, 2004. Go to original source...
  77. Ingram, J., Bartels, D.: The molecular basis of dehydration tolerance in plants. - Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 377-403, 1996. Go to original source...
  78. Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., Thomashow, M.F.: Components of the Arabidopsis C-repeat/dehydration responsive element binding factor cold response pathway are conserved in Brassica napus and other plant species. - Plant Physiol. 127: 910-917, 2001. Go to original source...
  79. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. - Science 280: 104-106, 1998. Go to original source...
  80. Janmohammadi, M., Enayati, V., Sabaghnia, N.: Impact of cold acclimation, de-acclimation and re-acclimation on carbohydrate content and antioxidant enzyme activities in spring and winter wheat. - Iceland Agr. Sci. 25: 3-11, 2012.
  81. Janska, A., Marsik, P., Zelenkova, S., Ovesna, J.: Cold stress and acclimation: what is important for metabolic adjustment? - Plant Biol. 12: 395-405, 2010. Go to original source...
  82. Jeon, J., Kim, J.: Cold stress signaling networks in Arabidopsis. - Plant Biol. 56: 69-76, 2013. Go to original source...
  83. Jeong, H.J., Kim, Y.J., Kim, S.H., Kim, Y.H., Lee, I.J., Kim, Y.K., Shin, J.S.: Nonsense-mediated mRNA decay factors, UPF1 and UPF3, contribute to plant defense. - Plant Cell Physiol. 52: 2147-2156, 2012. Go to original source...
  84. Jewell, M.C., Campbell, B.C., Godwin, I.D.: Transgenic plants for abiotic stress resistance. - In: Kole, C., Michler, C.H., Abbott, A.G., Hall, T.C. (ed.): Transgenic Crop Plants. Pp. 67-132. Springer, Berlin - Heidelberg 2010. Go to original source...
  85. Jiang, Q.W., Kiyoharu, O., Ryozo, I.: Two novel mitogenactivated protein signaling components, OsMEK1 and OsMAP1 are involved in a moderate low-temperature signaling pathway in rice. - Plant Physiol. 129: 1880-1891, 2002. Go to original source...
  86. Jin, W., Dong, J., Hu, Y., Lin, Z., Xu, X., Han, Z.: Improved cold-resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold-inducible transcription factors AtDREB1b. - HortScience 44: 35-39, 2009. Go to original source...
  87. Jonak, C., Kieger, S., Ligterink, W., Barker, P.J., Huskisson, N.S., Hirt, H.: Stress signaling in plants: a mitogenactivated protein kinase pathway is activated by cold and drought. - Proc. nat. Acad. Sci. USA 93: 11274-11279, 1996. Go to original source...
  88. Jonytiene, V., Burbulis, N., Kupriene, R., Blinstrubiene, A.: Effect of exogenous proline and de-acclimation treatment on cold tolerance in Brassica napus shoots cultured in vitro. - J. Food Agr. Environ. 10: 327-330, 2012.
  89. Kalberer, S.R., Wisniewski, M., Arora, R.: Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. - Plant Sci. 171: 3-16, 2006. Go to original source...
  90. Kamata, T., Uemura, M.: Solute accumulation in heat seedlings during cold acclimation: contribution to increased freezing tolerance. - CryoLetters 25: 311-322, 2004.
  91. Kamran, M., Shahbaz, M., Ashraf, M., Akram, N.A.: Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as pre-sowing seed treatment. - Pak. J. Bot. 41: 621-632, 2009.
  92. Kaplan, F., Kopka, J., Sung, D.Y., Zhao, W., Popp, M., Porat, R., Guy, C.L.: Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. - Plant J. 50: 967-981, 2007. Go to original source...
  93. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. - Nat. Biotechnol. 17: 287-291, 1999. Go to original source...
  94. Kasuga, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. - Plant Cell Physiol. 45: 346-350, 2004. Go to original source...
  95. Kavi Kishor, P.B., Sreenivasulu, N.: Is proline accumulation per se correlated with stress tolerance or is proline homoeostasis a more critical issue? - Plant Cell Environ. 37: 300-311, 2014. Go to original source...
  96. Kawakami, A., Sato, Y., Yoshida, M.: Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. - J. exp. Bot. 59: 793-802, 2008. Go to original source...
  97. Kawamura, Y., Uemura, M.: Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. - Plant J. 36: 141-154, 2003. Go to original source...
  98. Khodakovskaya, M.I., McAvoy, R., Peters, J., Wu, H., Li, Y.: Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold-inducible promoter. - Planta 223: 1090-1100, 2006. Go to original source...
  99. Kim, J.C., Lee, S.H., Cheong, Y.H., Yoo, C.M., Lee, S.I., Chun, H.J., Yun, D.J., Hong, J.C., Lee, S.Y., Lim, C.O., Cho, M.J.: A novel cold-inducible zinc finger protein from soybean SCOF-1 enhances cold tolerance in transgenic plants. - Plant J. 25: 247-259, 2001. Go to original source...
  100. Kim, M.H., Sasaki, K., Imai, R.: Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. - J. Biol. Chem. 284: 23454-23460, 2009. Go to original source...
  101. Klotke, J., Kopka, J., Gatzke, N., Heyer, A.G.: Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation evidence for a role of raffinose in cold acclimation. - Plant Cell Environ. 27: 1395-1404, 2004. Go to original source...
  102. Knight, H., Veale, E.L., Warren, G.J., Knight, M.R.: The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. - Plant Cell 1: 875-886, 1999. Go to original source...
  103. Kocsy, G., Pal, M., Soltesz, A., Szalai, G., Boldizsar, Á., Kovacs, V., Janda, T.: Low temperature and oxidative stress in cereals. - Acta agron. hung. 59: 169-189, 2011. Go to original source...
  104. Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M., Iba, K.: Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco. - Plant Physiol. 105: 601-605, 1994. Go to original source...
  105. Kosová, K., Vitámvás, P., Práąil, I.T.: The role of dehydrins in plant response to cold. - Biol. Plant. 51: 601-617, 2007. Go to original source...
  106. Koster, K.L., Lynch, D.V.: Solute accumulation and compartmentation during the cold acclimation of Puma rye. - Plant Physiol. 98: 108-113, 1992. Go to original source...
  107. Kovacs, Z., Sarkadi, S.L., Szucs, A., Kocsy, G.: Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. - Amino Acids 38: 623-631, 2010. Go to original source...
  108. Kovtun, Y., Chiu, W., Tena, G., Sheen, J.: Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. - Proc. nat. Acad. Sci. USA 97: 2940-2945, 2000. Go to original source...
  109. Krasensky, J., Jonak, C.: Drought, salt and temperature stressinduced metabolic rearrangements and regulatory networks. - J. exp. Bot. 63: 1593-1608, 2012. Go to original source...
  110. Kumar, M., Sirhindi, G., Bhardwaj, R., Kumar, S., Jain, G.: Effect of exogenous H2O2 on antioxidant enzymes of Brassica juncea L. seedlings in relation to 24-epibrassinolide under chilling stress. - Indian J. Biochem. Biophys. 47: 378-382, 2010.
  111. Kumar, S., Malik, J., Thakur, P., Kaistha, S., Sharma, K.: Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. - Acta Physiol. Plant. 33: 779-787, 2011. Go to original source...
  112. Kurepin, L.V., Dahal, K.P., Savitch, L.V., Singh, J., Bode, R., Ivanov, A.G., Hurry, V., Huner, N.: Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. - Int. J. mol. Sci. 14: 12729-12763, 2013. Go to original source...
  113. Lee, H., Xiong, L., Gong, Z., Ishitani, M., Stevenson, B., Zhu, J.K.: The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. - Genes Dev. 15: 912-924, 2001. Go to original source...
  114. Lee, J.H., Johnson, J.V., Talcott, S.T.: Identification of ellagic conjugates and other polyphenolics in muscadine grapes by HPLC-ESI-MS. - J. Agr. Food Chem. 53: 6003-6010, 2005. Go to original source...
  115. Levitt, J.: Responses of Plants to Environmental Stresses. - Academic Press, New York 1980.
  116. Li, H.J., Yang, A.F., Zhang, X.C., Gao, F., Zhang, J.R.: Improving freezing tolerance of transgenic tobacco expressing sucrose: sucrose 1-fructosyltransferase gene from Lactuca sativa. - Plant Cell Tissue Organ Cult. 89: 37-48, 2007. Go to original source...
  117. Li, H.W., Zang, B.S., Deng, X.W., Wang, X.P.: Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. - Planta 234: 1007-1018, 2011. Go to original source...
  118. Lissarre, M., Ohta, M., Sato, A., Miura, K.: Cold-responsive gene regulation during cold acclimation in plants. - Plant Signal Behav. 5: 948-952, 2010. Go to original source...
  119. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi Shinozaki, K., Shinozaki, K.: Two transcription factors DREB1 and DREB2 with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression respectively in Arabidopsis. - Plant Cell 10: 1391-1406, 1998. Go to original source...
  120. Ma, Q., Dai, X., Xu, Y., Guo, J., Liu, Y., Chen, N., Xiao, J., Zhang, D., Xu, Z., Zhang, X., Chong, K.: Enhanced tolerance to chilling stress in OSMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. - Plant Physiol. 150: 244-256, 2009. Go to original source...
  121. Mahajan, S., Tuteja, N.: Cold, salinity and drought stresses: an overview. - Arch. Biochem. Biophys. 444: 139-158, 2005. Go to original source...
  122. Maruyama, K., Takeda, M., Kidokoro, S.: Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. - Plant Physiol. 150: 1972-1980, 2009. Go to original source...
  123. Mattheis, J.P., Kctchie, D.O.: Changes in parameters of the plasmalemma ATPase during cold acclimation of apple (Malus domestica) tree bark tissues. - Physiol. Plant. 78: 616-622, 1990. Go to original source...
  124. McKersie, B.D., Bowley, S.R.: Active oxygen and freezing tolerance in transgenic plants. - In: Li, P.H., Chen, T.H.H. (ed.): Plant Cold Hardiness. Pp. 203-214. Plenum Press, New York 1997. Go to original source...
  125. Medina, J.R., Salinas, C.J.: Developmental and stress regulation of RCI2A and RCI2B two cold inducible genes of Arabidopsis encoding highly conserved hydrophobic proteins. - Plant Physiol. 125: 1655-1666, 2001. Go to original source...
  126. Mickelbart, M.V., Chapman, P., Collier-Christian, L.: Endogenous levels and exogenous application of glycinebetaine to grapevines. - Sci Hort. 111: 7-16, 2006. Go to original source...
  127. Mikołajczyk, M., Awotunde, O.S., Muszyńska, G., Klessig, D.F., Dobrowolska, G.: Osmotic stress induces rapid activation of a salicylic acid induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. - Plant Cell 12: 165-178, 2000. Go to original source...
  128. Mishra, N.S., Tuteja, R., Tuteja, N.: Signaling through MAP kinase networks in plants. - Arch. Biochem. Biophys. 452: 55-68, 2006. Go to original source...
  129. Miura, K., Furumoto, T.: Cold signaling and cold response in plants. - Int. J. mol. Sci. 14: 5312-5337, 2013. Go to original source...
  130. Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J., Hasegawa, P.M. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. - Plant Cell 19: 1403-1414, 2007. Go to original source...
  131. Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi Shinozaki, K.: A gene encoding a mitogen activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. - Proc. nat. Acad. Sci. USA 93: 765-769, 1996. Go to original source...
  132. Mizuno, N., Shitsukawa, N., Hosogi, N., Park, P., Takumi, S., Autoimmune response and repression of mitotic cell division occur in inter-specific crosses between tetraploid wheat and Aegilops tauschii Coss. that show low temperature-induced hybrid necrosis. - Plant J. 68: 114-128, 2011. Go to original source...
  133. Moellering, E.R., Muthan, B., Benning, C., Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. - Science 330: 226-228, 2010. Go to original source...
  134. Mollo, L., Martins, M.C.M., Oliveira, V.F., Nievola, C.C., Cassia, R., Figueiredo-Ribeiro, L.: Effects of low temperature on growth and non-structural carbohydrates of the imperial bromeliad Alcantarea imperialis cultured in vitro. - Plant Cell Tissue Organ Cult. 107: 141-149, 2011. Go to original source...
  135. Murata, N., Ishizaki-Nishizawa, O., Higashi, S., Hayashi, S., Tasaka, Y., Nishida, I.: Genetically engineered alteration in the chilling sensitivity of plants. - Nature 356: 710-713, 1992. Go to original source...
  136. Nakayama, K., Okawa, K., Kakizaki, T., Honma, T., Itoh, H., Inaba, T.: Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. - Plant Physiol. 144: 513-523, 2007. Go to original source...
  137. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. - FEBS Lett. 461: 205-210, 1999. Go to original source...
  138. Nayyar, H., Chander, K., Kumar, S., Bains, T.: Glycine betaine mitigates cold stress damage in chickpea. - Agron. Sustain. Dev. 25: 381-388, 2005. Go to original source...
  139. Olien, C.R., Smith, M.N., Ice adhesions in relation to freeze stress. - Plant Physiol. 60: 499-503, 1977. Go to original source...
  140. Ouellet, F., Vazquez-Tello, A., Sarhan, F.: The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. - FEBS Lett. 423: 324-328, 1998. Go to original source...
  141. Park, E.J., Jeknic, Z., Sakamoto, A., DeNoma, J., Yuwansiri, R., Murata, N., Chen, T.H.: Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. - Plant J. 40: 474-487, 2004. Go to original source...
  142. Park, E.J., Jeknic, Z., Chen, T.H.H.: Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. - Plant Cell Physiol. 47: 706-714, 2006. Go to original source...
  143. Patade, V.Y., Khatri, D., Ahmed, Z.: Cold tolerance in Osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes. - Springer Plus 2: 117, 2013. Go to original source...
  144. Pathak, R.K., Taj, G., Kumar, A.: Modeling of the MAPK machinery activation in response to various abiotic and biotic stresses in plants by a system biology approach. - Bioinformation 9: 443-449, 2013. Go to original source...
  145. Pennycooke, J.C., Jones, M.L., Stushnoff, C.: Down-regulating α-galactosidase enhances freezing tolerance in transgenic Petunia. - Plant Physiol. 133: 901-909, 2003. Go to original source...
  146. Pillai, M.A., Akiyama, T.: Differential expression of an Sadenosyl- methionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes. - Mol. Genet. Genom. 271: 141-149, 2004. Go to original source...
  147. Pino, M.T., Skinner, J.S., Park, E.J., Jeknic, Z., Hayes, P.M., Thomashow, M.F., Chen, T.H.: Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. - Plant Biotechnol. J. 5: 591-604, 2007. Go to original source...
  148. Pitzschke, A., Schikora, A., Hirt, H.: MAPK cascade signalling networks in plant defence. - Curr. Opin. Plant Biol. 12: 421-426, 2009. Go to original source...
  149. Polisensky, D.H., Braam, J.: Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. - Plant Physiol. 111: 1271-1279, 1996. Go to original source...
  150. Qin, F., Shinozaki, K., Yamaguchi-Shinozaki, K.: Achievements and challenges in understanding plant abiotic stress responses and tolerance. - Plant Cell Physiol. 52: 1569-1582, 2011. Go to original source...
  151. Qin, F., Sakuma, Y., Li, J., Liu, Q., Li, Y.Q., Shinozaki, K., Yamaguchi-Shinozaki, K.: Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. - Plant Cell Physiol. 45: 1042-1052, 2004. Go to original source...
  152. Racz, I.K.M., Lásztity, D., Veisz, O., Szalai, and D. E., Páld.: Effect of short term and long-term low temperature stress on polyamine biosynthesis in wheat genotypes with varying degrees of frost tolerance. - J. Plant Physiol. 148: 368-373, 1996. Go to original source...
  153. Rajashekar, C.B., Zhou, H., Marcum, K.B., Prakash, O.: Glycinebetaine accumulation and induction of cold tolerance in strawberry (Fragaria × ananassa Duch.) plants. - Plant Sci. 148: 175-183, 1999. Go to original source...
  154. Rapacz, M.: Regulation of frost resistance during cold deacclimation and reacclimation in oilseed rape: a possible role of PS II redox state. - Plant Physiol. 115: 236-243, 2002. Go to original source...
  155. Rasheed, R., Wahid, A., Ashraf, M., Basra, S.M.A.: Role of proline and glycinebetaine in improving chilling stress tolerance in sugarcane buds at sprouting. - Int. J. agr. Biol. 12: 1-8, 2010.
  156. Robinson, M.J., Cobb, M.H.: Mitogen-activated protein kinase pathways. - Curr. Opin Cell Biol. 9: 180-186, 1997. Go to original source...
  157. Rohde, P., Hincha, D.K., Heyer, A.G.: Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. - Plant J. 38: 790-799, 2004. Go to original source...
  158. Roxas, V.P., Smith, R.K., Jr., Allen, E.R., Allen, R.D.: Overexpression of glutathione S-transferase/ glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. - Nat. Biotechnol. 15: 988-991, 1997. Go to original source...
  159. Sagisaka, S., Matsuda, Y., Okuda, T., Ozeki, S.: Relationship between wintering ability of winter wheat and the extent of depression of carbohydrate reserves: basal metabolic rate under snow determines longevity of plants. - Soil Sci. Plant Nutr. 37: 531-541, 1991. Go to original source...
  160. Sakamoto, A., Murata, N.: Genetic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance. - J. exp. Bot. 51: 81-88, 2000. Go to original source...
  161. Sakamoto, A., Valverde, R., Alia, Chen, T.H., Murata, N.: Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. - Plant J. 22: 449-453. 2000. Go to original source...
  162. Sanchez-Bel, P., Egea, I., Sanchez-Ballesta, M.T., Sevillano, L., Bolarin, M.D.C., Flores, F.B.: Proteome changes in tomato fruits pior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery. - Plant Cell Physiol. 53: 470-484, 2012. Go to original source...
  163. Sanghera, G.S., Wani, S.H., Hussain, W., Singh, N.B.: Engineering cold stress tolerance in crop plants. - Curr. Genom. 12: 30-43, 2011. Go to original source...
  164. Sarkar, D., Bhowmik, P.C., Kwon, Y., Shetty, K.: Cold acclimation responses of three cool-season turfgrasses and the role of proline-associated pentose phosphate pathway. - J. amer. Soc. hort. Sci. 134: 210-220, 2009. Go to original source...
  165. Sasaki, H., Ichimura, K., Oda, M.: Changes in sugar content during cold acclimation and deacclimation of cabbage seedlings. - Ann. Bot. 78: 365-369, 1996. Go to original source...
  166. Satoh, R., Nakashima, K., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: ACTCAT a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. - Plant Physiol. 130: 709-719, 2002. Go to original source...
  167. Schulze, W.X., Schneider, T., Starck, S., Martinoia, E., Trentmann, O.: Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. - Plant J. 69: 529-541, 2012. Go to original source...
  168. Sen Gupta, A., Heinen, J.L., Holady, A.S., Burke, J.J., Allen, R.D.: Increased resistance to oxidative stress in transgenic plants that over-express chloroplastic Cu/Zn superoxide dismutase. - Proc. nat. Acad. Sci. USA 90: 1629-1633, 1993. Go to original source...
  169. Seo, P.J., Park, M., Park, C.: Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions. - Planta 237: 1415-1424, 2013. Go to original source...
  170. Shane, J.C.: Proline's Function in Cold Stress and Osmoregulation in Carrot Tissue Culture Suspensions. - Thesis, University of New Mexico, Albuquerque 1986.
  171. Sharma, N., Cram, D., Huebert, T., Zhou, N., Parkin, I.A.: Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant's response to cold stress. - Plant mol. Biol. 63: 171-184, 2007. Go to original source...
  172. Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular response to drought and cold stress. - Curr. Opin. Plant Biol. 7: 161-167, 1996. Go to original source...
  173. Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene expression and signal transduction in water-stress response. - Plant Physiol. 115: 327-334, 1997. Go to original source...
  174. Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular responses to dehydration and low temperature: differences and crosstalk between two stress signaling pathways. - Curr. Opin. Plant Biol. 3: 217-223, 2000. Go to original source...
  175. Shirasawa, K., Takabe, T., Takabe, T., Kishitani, S.: Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. - Ann. Bot. 98: 565-571, 2006. Go to original source...
  176. Sinha, A.K., Jaggi, M., Tuteja, N.: Mitogen-activated protein kinase signaling in plants under abiotic stress. - Plant Signal. Behav. 6: 196-203, 2011. Go to original source...
  177. Smith, A.M., Stitt, M.: Coordination of carbon supply and plant growth. - Plant Cell Environ. 30: 1126-1149, 2007. Go to original source...
  178. Somerville, C.: Direct tests of the role of membrane lipid composition in low temperature induced photoinhibition and chilling sensitivity in plant and cyanobacteria. - Proc. nat. Sci. 84: 739-743, 1995. Go to original source...
  179. Steponkus, P.L., Uemura, M., Webb, M.S.: A contrast of the cryostability of the plasma membrane of winter rye and spring oat. Two species that widely differ in their freezing tolerance and plasma membrane lipid composition. - In: Steponkus, P.L. (ed.): Advances in Low-Temperature Biology. Vol 2. Pp. 211-312. JAI Press, London 1993.
  180. Strand, A., Foyer, C.H., Gustafsson, P., Gardestrom, P., Hurry, V.: Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. - Plant Cell Environ. 26: 523-535, 2003. Go to original source...
  181. Su, C.F., Wang, Y.C., Hsieh, T.H., Lu, C.A., Tseng, T.H., Yu, S.M.: A novel MYBS3-dependent pathway confers cold tolerance in rice. - Plant Physiol. 153: 145-158, 2010. Go to original source...
  182. Suzuki, N., Mittler, R.: Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. - Physiol. Plant. 126: 45-51, 2006. Go to original source...
  183. Swaaij, A.C., Jacobsen, E., Feenstra, W.: Effect of cold hardening, wilting and exogenously applied proline on leaf proline content and frost tolerance of several genotypes of solanum. - Physiol. Plant. 64: 230-236, 1985. Go to original source...
  184. Szabados, L., Savoure, A.: Proline: a multifunctional amino acid. - Trends Plant Sci. 15: 89-??, 2010. Go to original source...
  185. Tabaei-Aghdaei, S.R., Pearce R.S., Harrison, P.: Sugars regulate cold-induced gene expression and freezing-tolerance in barley cell cultures. - J. exp. Bot. 54: 1565-1575, 2003. Go to original source...
  186. Takagi, T., Nakamura, M., Hayashi, H., Inatsugi, R., Yano, R., Nishida, I.: The leaf-order-dependent enhancement of freezing tolerance in cold-acclimated Arabidopsis rosettes is not correlated with the transcript levels of the cold-inducible transcription factors of CBF/DREB1. - Plant Cell Physiol. 44: 922-931, 2003. Go to original source...
  187. Takahashi, D., Li, B., Uemura, M.: Plant plasma membrane proteomics for improving cold tolerance. - Front. Plant Sci. 4: 90, 2013. Go to original source...
  188. Talanova, V.V., Titov, A.F., Topchieva, L.V.: Specific features of ABA-dependent gene expression in spring wheat during cold adaptation. - Doklady Biol. Sci. 438: 165-167, 2011. Go to original source...
  189. Tamminen, I., Makela, P., Heino, P., Palva, E.T.: Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. - Plant J. 25: 1-8, 2001. Go to original source...
  190. Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., Dangl, J.L., Hirt, H.: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. - Mol. Cell 15: 141-152, 2004. Go to original source...
  191. Thakur, P., Kumar, S., Malik, J.A., Berger, J.D., Nayyar, H.: Cold stress effects on reproductive development in grain crops: an overview. - Environ. exp. Bot. 67: 429-443, 2010. Go to original source...
  192. Thakur, P., Nayyar, H.: Facing the cold stress by plants in the changing environment: sensing, signaling, and defending mechanisms. - In: Tuteja, N., Gill, S.S. (ed.): Plant Acclimation to Environmental Stress. Pp. 29-69. Springer, New York 2013. Go to original source...
  193. Thomashow, M.F.: Molecular basis of plant cold acclimation: insights gained from studying the cbf cold response pathway. - Plant Physiol. 154: 571-577, 2010. Go to original source...
  194. Thomashow, M.F.: Plant cold acclimation, freezing tolerance genes and regulatory mechanisms. - Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571-599, 1999. Go to original source...
  195. Thomashow, M.F.: Role of cold-responsive genes in plant freezing tolerance. - Plant Physiol. 118: 1-7, 1998. Go to original source...
  196. Trujillo, L.E., Sotolongo, M., Menendez, C., Ochogava, M.E., Coll, Y., Hernandez, I., Borras-Hidalgo, O., Thomma, B.P.H.J., Vera, P., Hernandez, L.: SodERF3 a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. - Plant Cell Physiol. 49: 512-515, 2008. Go to original source...
  197. Uemura, M., Steponkus, L.P.: Effect of cold acclimation on the lipid composition of the inner and outer membrane of the chloroplast envelope isolated from rye leaves. - Plant Physiol. 114: 1493-1500, 1997. Go to original source...
  198. Uemura, M., Tominaga, Y., Nakagawara, C., Shigematsu, S., Minami, A., Kawamura, Y.: Responses of the plasma membrane to low temperatures. - Physiol. Plant. 126: 81-89, 2006. Go to original source...
  199. Uemura, M., Yoshida, S.: Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv. Puma). - Plant Physiol. 75: 818-826, 1984. Go to original source...
  200. Vannini, C., Locatelli, F., Bracale, M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M., Baldoni, E., Coraggio, I.: Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. - Plant J. 37: 115-127, 2004. Go to original source...
  201. Vogel, J.T. Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., Thomashow, M.F.: Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. - Plant J. 41: 195-211, 2005. Go to original source...
  202. Waditee, R., Bhuiyan, M.N., Rai, V., Aoki, K., Tanaka, Y., Hibino, T., Suzuki, S., Takano, J., Jagendorf, A.T., Takabe, T.: Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. - Proc. nat Acad. Sci. USA 102: 1318-1323. 2005. Go to original source...
  203. Wang, X.C., Zhao, Q.Y., Ma, C.L., Zhang, Z.H., Cao, H.L, Kong, Y.M., Yue, C., Hao, X.Y., Chen, L., Ma, J.Q., Jin, J.Q., Li, X., Yang, Y.: Global transcriptome profiles of Camellia sinensis during cold acclimation. - BMC Genom. 14: 1-15, 2013. Go to original source...
  204. Wanner, L., Junttila, O.: Cold-induced freezing tolerance in Arabidopsis. - Plant Physiol. 120: 391-400, 1999. Go to original source...
  205. Warren, G., McKown, R., Marin, A., Teutonico, R.: Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. - Plant Physiol. 111: 1011-1019, 1996. Go to original source...
  206. Weiser, C.J.: Cold resistance and injury in woody plants. - Science 169: 1269-1277, 1970. Go to original source...
  207. Wyn Jones, R.G., Storey, R.: Betaines. - In: Paleg, L.G., Aspinal, D. (ed.): The Physiology and Biochemistry of Drought Resistance in Plants. Pp. 171-204. Academic Press, New York 1981.
  208. Xiao, J., Cheng, H., Li, X., Xiao, J., Xu, C., Wang, S.: Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. - Plant Physiol. 163: 1868-1882, 2013. Go to original source...
  209. Xin, Z., Ajin, M., Junping, C., Robert, L.L., John, B.: Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. - Plant J. 49: 786-799, 2007. Go to original source...
  210. Xing, W., Rajashekar, C.B.: Glycinebetaine involvement in freezing tolerance and water stress is Arabidopsis thaliana. - Environ. exp. Bot. 46: 21-28, 2001. Go to original source...
  211. Xiong, L., Lee, H., Huang, R. Zhu, J.K.: A single amino acid substitution in the Arabidopsis FIERY1/HOS2 protein confers cold signaling specificity and lithium tolerance. - Plant J. 40: 536-545, 2004. Go to original source...
  212. Xiong, L., Schumaker, K.S., Zhu, J.K.: Cell signaling during cold, drought and salt stresses. - Plant Cell 14: 165-183, 2002. Go to original source...
  213. Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.H.D., Wu, R.: Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. - Plant Physiol. 110: 249-257, 1996. Go to original source...
  214. Xu, J., Tian, Y.S., Peng, R.H., Xiong, A.S., Zhu, B., Jin, X.F., Gao, F., Fu, X.Y., Hou, X.L., Yao, Q.H.: AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. - Planta 231: 1251-1260, 2010. Go to original source...
  215. Xue, G.P.: An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif. - Biochim. biophys. Acta 1577: 63-72, 2002. Go to original source...
  216. Xue, G.P.: The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of lowtemperature responsive genes in barley is modulated by temperature. - Plant J. 33: 373-383, 2003. Go to original source...
  217. Yadav, S.K.: Cold stress tolerance mechanisms in plants. A review. - Agron. Sustain. Dev. 30: 515-527, 2010. Go to original source...
  218. Yamaguchi-Shinozaki, K., Shinozaki, K.: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. - Annu. Rev. Plant Biol. 57: 781-803, 2006. Go to original source...
  219. Yamazaki, H., Ayabe, K., Ishii, R., Kuriyama, A.: Desiccation and cryopreservation of actively-growing cultured plant cells and protoplasts. - Plant Cell Tissue Organ Cult. 97: 151-158, 2009. Go to original source...
  220. Yan, S.P., Zhang, Q.Y., Tang, Z.C., Su, W.A., Sun, W.N., Comparative proteomic analysis provides new insights into chilling stress responses in rice. - Mol. Cell Proteome 5: 484-496, 2006. Go to original source...
  221. Yoshikawa, H., Honda, C., Kondo, S.: Effect of lowtemperature stress on abscisic acid, jasmonates, and polyamines in apples. - Plant Growth Regul. 52: 199-206, 2007. Go to original source...
  222. Zhai, H., Bai, X., Zhu, Y., Li, Y., Cai, H., Ji, W., Ji, Z., Liu, X., Liu, X., Li, J.: A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis. - Biochem. biophys. Res. Comm. 394: 1018-1023, 2010. Go to original source...
  223. Zhang, L.X., Lai, J.H., Liang, Z.S., Ashraf, M.: Interactive effects of sudden and gradual drought stress and foliarapplied glycinebetaine on growth, water relations, osmolyte accumulation and antioxidant defence system in two maize cultivars differing in drought tolerance. - J. Agron. Crop Sci. 200: 425-433, 2014. Go to original source...
  224. Zhang, S., Jiang, H., Peng, S., Korpelainen, H., Li, C.: Sexrelated differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. - J. exp. Bot. 62: 675-686, 2011. Go to original source...
  225. Zhang, W., Jiang, B., Li, W., Song, H., Yu, Y., Chen, J.: Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. - Sci. Hort. 122: 200-208, 2009. Go to original source...
  226. Zhang, X., Fowler, S.G., Cheng, H., Lou, S.Y., Rhee, Y., Stockinger, E.J., Thomashow, M.F.: Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. - Plant J. 39: 905-919, 2004. Go to original source...
  227. Zhou, J., Wang, J., Shi, K., Xia, X.J., Zhou, Y.H., Yu, J.Q.: Hydrogen peroxide is involved in the cold acclimationinduced chilling tolerance of tomato plants. - Plant Physiol. Biochem. 60: 141-149, 2012. Go to original source...
  228. Zhu, B., Xiong, A.S., Peng, R.H., Xu, J., Jin, X.F., Meng, X.R., Yao, Q.H.: Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis. - Mol. Biol. Rep. 37: 961-966, 2010. Go to original source...
  229. Zhu, B., Choi, D.W., Fenton, R., Close, T.J.: Expression of the barley dehydrin multigene family and the development of freezing tolerance. - Mol. gen. Genet. 264: 145-153, 2000. Go to original source...
  230. Zhu, J., Dong, C., Zhu, J.: Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. - Curr. Opin. Plant Biol. 10: 290-295, 2007. Go to original source...
  231. Zhu, J., Verslues, P.E., Zheng, X., Lee, B.H., Zhan, X., Manabe, Y., Sokolchik, I., Zhu, Y., Dong, C.H., Zhu, J., Hasegawa, P.H, Bressan, R.A.: HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. - Proc. nat. Acad. Sci. USA 102: 9966-9971, 2005. Go to original source...