biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 60:645-654, 2016 | DOI: 10.1007/s10535-016-0601-y

Selection of reference genes for real-time quantitative PCR analysis of gene expression in Glycyrrhiza glabra under drought stress

A. Maroufi1,*
1 Department of Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran

Licorice (Glycyrrhiza glabra L.) is an important medicinal plant accumulating high-value secondary metabolites. Real-time reverse transcription quantitative PCR (RT-qPCR) has become a common method for studying gene expression, and the availability of stable reference genes is a prerequisite to obtain accurate quantification of transcript abundance. Therefore, an experiment was designed to determine appropriate reference genes for gene expression studies in licorice. Based on reports in the literature and the availability of genomic sequences, eight putative reference genes were chosen. Further, the expression stabilities of these genes were evaluated in leaf and root tissues under normal and drought stress conditions using three distinct statistical algorithms including geNorm, NormFinder, and BestKeeper. Among the investigated genes, ubiquitin-conjugating enzyme E2 (UBC2), elongation factor 1 α (EF1), and actin (ACT) under normal conditions and ACT, β-tubulin (BTU), and UBC2 under drought stress conditions were the most stable genes in leaves, whereas BTU, ACT, and UBC2 under normal and drought stress conditions were identified as the most stable genes in roots. Nevertheless, the use of glyceraldehyde-3-phosphate dehydrogenase, F-box protein, and BTU have not been approved as reference genes for RT-qPCR data normalization. The findings in this study highlight the importance of the use of well-validated reference genes to the success of gene expression analysis using RT-qPCR.

Keywords: ACT; BTU; EF1; licorice; normalization; UBC2
Subjects: reference genes; quantitative real-time PCR; actin; tubulin; elongation factor; ubiquitin-conjugating enzyme E2; licorice

Received: November 15, 2014; Revised: November 22, 2015; Accepted: December 16, 2015; Published: December 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Maroufi, A. (2016). Selection of reference genes for real-time quantitative PCR analysis of gene expression in Glycyrrhiza glabra under drought stress. Biologia plantarum60(4), 645-654. doi: 10.1007/s10535-016-0601-y
Download citation

Supplementary files

Download filebpl-201604-0005_S1.pdf

File size: 307.12 kB

References

  1. Andersen, C.L., Jensen, J.L., Orntoft, T.F.: Normalization of quantitative real-time PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. - Cancer. Res. 64: 5245-5250, 2004. Go to original source...
  2. Asl, M.N., Hosseinzadeh, H.: Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. - Phytother. Res. 22: 709-724, 2008. Go to original source...
  3. Barsalobres-Cavallari, C.F., Severino, F.E., Maluf, M.P., Maia, I.G.: Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. - BMC mol. Biol. 10: 1, 2009. Go to original source...
  4. Bookout, A.L., Cummins, C.L., Mangelsdorf, D.J., Pesolak, J.M., Kramerm, M.F.: High-throughput real-time quantitative reverse-transcription PCR. - Curr. Protocols mol. Biol. 73: 15.8:15.8.1-15.8.28, 2006. Go to original source...
  5. Boratyn, G.M., Camacho, C., Cooper, P.S., Coulouris, G., Fong, A., Ma, N., Madden, T.L., Matten, W.T., McGinnis, S.D., Merezhuk, Y., Raytselis, Y., Sayers, E.W., Tao, T., Ye, J., Zaretskaya, I.: BLAST: a more efficient report with usability improvements. - Nucl.. Acids Res. 41: W29-W33, 2013. Go to original source...
  6. Bustin, S.A., Nolan, T.: Pitfalls of Quantitative real-time reverse-transcription polymerase chain reaction. - J. Biomol. Technol. 15: 155-166, 2004.
  7. Condori, J., Nopo-Olazabal, C., Medrano, G., Medina-Bolivar, F.: Selection of reference genes for qPCR in hairy root cultures of peanut. - BMC Res. Notes 4: 392, 2011. Go to original source...
  8. Cui, S.J., He, Q.L., Chen, Y., Huang, M.R.: Evaluation of suitable reference genes for gene expression studies in Lycoris longituba. - J. Genet. 90: 503-506, 2011. Go to original source...
  9. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K., Scheible, W.R.: Genome wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. - Plant. Physiol. 139: 5-17, 2005. Go to original source...
  10. De Almeida, M.R., Ruedell, C.M., Ricachenevsky, F.K., Sperotto, R.A., Pasquali, G., Fett-Neto A.G.: Reference gene selection for quantitative reverse transcriptionpolymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globules Labill. - BMC. mol. Biol. 11: 73, 2010. Go to original source...
  11. Dheda, K., Huggett, J.F., Chang, J.S., Kim, L.U., Bustin, S.A., Johnson, M.A., Rook, G.A., Zumla, A.: The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. - Anal. Biochem. 344: 141-143, 2005. Go to original source...
  12. Die, J.V., Roman, B., Nadal, S., Gonzalez-Verdejo, C.I.: Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. - Planta 232: 145-153, 2010. Go to original source...
  13. Farajalla, M.R., Gulick, P.J.: The α-tubulin gene family in wheat (Triticum aestivum L.) and differential gene expression during cold acclimation. - Genome. 50: 502-510, 2007. Go to original source...
  14. Gachon, C., Mingam, A., Charrier, B.: Real-time PCR: what relevance to plant studies. - J. exp. Bot. 55: 1445-1454, 2004. Go to original source...
  15. Galli, V., Borowski, J.M., Perin, E.C., Da Silva Messias, R., Labonde, J., Dos Santos Pereira, I., Dos Anjos Silva, S.D., Rombaldi, C.V.: Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses. - Gene 554: 205-214, 2015. Go to original source...
  16. Guo, J.L., Ling, H., Wu, Q.B., Xu, L.P., Que, Y.X.: The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. - Sci. Rep. 4: 7042, 2014. Go to original source...
  17. Gutierrez, L., Mauriat, M., Guenin, S., Pelloux, J., Lefevre, J.F., Louvet, R., Rusterucci, C., Moritz, T., Guerineau, F., Bellini, C., Van Wuytswinkel, O.: The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RTPCR) analysis in plants. - Plant. biotechnol. J. 6: 609-618, 2008. Go to original source...
  18. Hansen, U., Seufert, G.: Terpenoid emission from Citrus sinensis (L.) Osbeck under drought stress. - Phys. Chem. Earth. 24: 681-687, 1999. Go to original source...
  19. Hayashi, H., Huang, P., Kirakosyan, A., Inoue, K., Hiraoka, N., Ikeshiro, Y,, Kushiro, T., Shibuya, M., Ebizuka, Y.: Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice. - Biol. pharm. Bull. 24: 912-916, 2001. Go to original source...
  20. Hayashi, H., Huang, P., Takada, S., Obinata, M., Inoue, K., Shibuya, M., Ebizuka, Y.: Differential expression of three oxidosqualene cyclase mRNAs in Glycyrrhiza glabra. - Biol. Pharm. Bull. 27: 1086-1092, 2004. Go to original source...
  21. Hayashi, H,, Sudo, H.: Economic importance of licorice. - Plant. Biotechnol. 26: 101-104, 2009 Go to original source...
  22. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., Vandesompele, J.: - qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. - Genome. Biol. 8: R19, 2007. Go to original source...
  23. Hoenemann, C., Hohe, A.: Selection of reference genes for normalization of quantitative real-time PCR in cell cultures of Cyclamen persicum. - Electron. J. Biotechnol. 14: 12-13, 2011. Go to original source...
  24. Hu, R., Fan, C., Li, H., Zhang, Q., Fu, Y.F. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. - BMC mol. Biol. 10: 93, 2009. Go to original source...
  25. Huis, R., Hawkins, S., Neutelings, G.: Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). - BMC Plant. Biol. 10: 71, 2010. Go to original source...
  26. Janska, A., Hodek, J., Svoboda, P., Zamecnik, J., Prasil, I.T., Vlasakova, E., Milella, L., Ovesna, J.: The choice of reference gene set for assessing gene expression in barley (Hordeum vulgare L.) under low temperature and drought stress. - Mol. Genet. Genomics 288: 639649, 2013. Go to original source...
  27. Jarosova, J., Kundu, J.: Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. - BMC Plant. Biol. 10: 146-154, 2010. Go to original source...
  28. Karlen, Y., Mcnair, A., Perseguers, S., Mazza, C., Mermod, N.: Statistical significance of quantitative PCR. - BMC Bioinformatics. 8: 131, 2007. Go to original source...
  29. Kozera, B., Rapacz, M.: Reference genes in real-time PCR. - J. appl. Genet. 54: 391-406, 2013. Go to original source...
  30. Le, D.T., Aldrich, D.L., Valliyodan, B., Watanabe, Y., Ha, C.V., Nishiyama, R., Guttikonda, S.K., Quach, T.N., Gutierrez-Gonzalez, J.J., Tran, L.S., Nguyen, H.T.: Evaluation of candidate reference genes for normalization of quantitative rt-pcr in soybean tissues under various abiotic stress conditions. - PloS ONE 7: e46487, 2012. Go to original source...
  31. Long, X.Y., Wang, J.R., Ouellet, T., Rocheleau, H., Wei, Y.M., Pu, Z.E., Jiang, Q.T., Lan, X.J., Zheng, Y.L.: Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. - Plant. mol. Biol. 74: 307-311, 2010. Go to original source...
  32. Luo, H., Chen, S., Wan, H.J., Chen, F., Gu, C., Liu, Z.: Candidate reference genes for gene expression studies in water lily. - Anal. Biochem. 404: 100-102, 2010. Go to original source...
  33. Marino, E.R., Borges, A.A., Perez, A.B., Perez, J.A.: Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. - BMC Plant. Biol. 8: 131, 2008. Go to original source...
  34. Marum, L., Miguel, A., Ricardo, C.P., Miguel, C.: Reference gene selection for quantitative real-time PCR normalization in Quercus suber. - PloS ONE 7: e35113, 2012. Go to original source...
  35. McDowell, J.M., Huang, S., McKinney, E.C., An. Y.Q., Meagher, R.B.: Structure and evolution of the actin gene family in Arabidopsis thaliana. - Genetics. 142: 587-602, 1996. Go to original source...
  36. Obolentseva, G.V., Litvinenko, V.I., Ammosov, A.S.: Pharmacological and therapeutic properties of licorice preparations (a review). - Pharm. Chem. J. 33: 24-31, 1999. Go to original source...
  37. Paolacci, A.R., Tanzarella, O.A., Porceddu, E., Ciaffi, M.: Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. - BMC mol. Biol. 10: 11, 2009. Go to original source...
  38. Pfaffl, M.W.: A new mathematical model for relative quantification in real-time RT-PCR. - Nucl. Acids Res. 29: 2002-2007, 2001. Go to original source...
  39. Pfaffl, M.W.: Quantification strategies in real-time PCR. - In: Bustin, S.A. (ed.): The Real-Time PCR Encyclopedia A-Z of Quantitative PCR. Pp. 87-120. International University Line, La Jolla 2004.
  40. Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P.: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper excel-based tool using pair-wise correlations. - Biotechnol. Lett. 26: 509-515, 2004. Go to original source...
  41. Piotr, C., Sacchi, N.: The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. - Nat. Protocols 1: 581-585, 2006. Go to original source...
  42. Radonic, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W., Nitsche, A.: Guideline to reference gene selection for quantitative real-time PCR. - Biochem. biophys. Res. Commun. 313: 856-862, 2004. Go to original source...
  43. Rebouças, E.D.L., Costa, J.J.D.N., Passos, M.J., Passos, J.R.D.S., Hurk, R.V.D., Silva, J.R.V.: Real time PCR and importance of housekeepings genes for normalization and quantification of mRNA expression in different tissues. - Braz. Arch. Biol. Technol. 56: 143-154, 2013. Go to original source...
  44. Reid, K.E., Olsson, N., Schlosser, J., Peng, F., Lund, S.T.: An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RTPCR during berry development. - BMC Plant. Biol. 6: 27, 2006. Go to original source...
  45. Schmidt, G.W., Delaney, S.K.: Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. - Mol. Genet. Genomics 283: 233-241, 2010. Go to original source...
  46. Schmittgen, T.D., Lee, E.J., Jiang, J.: High-throughput real-time PCR Methods. - Mol. Biol. 429: 89-98, 2008. Go to original source...
  47. Selmar, D., Kleinwachter, M.: Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. - Ind. Crop Prod. 42: 558-566, 2013. Go to original source...
  48. Seki, H., Ohyama, K., Sawai, S., Mizutani, M., Ohnishi, T., Sudo, H., Akashi, T., Aoki, T., Saito, K., Muranaka, T.: Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. - Proc. nat. Acad. Sci. USA. 105: 14204-14209, 2008. Go to original source...
  49. Seki, H., Sawai, S., Ohyama, K., Mizutani, M., Ohnishi, T., Sudo, H., Fukushima, E.O., Akashi, T., Aoki, T., Saito, K., Muranaka, T.: Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. - Plant Cell 23: 4112-4123, 2011. Go to original source...
  50. Shabani, L., Ehsanpour, A.A., Esmaeili, A.: Assessment of squalene synthase and beta-amyrin synthase gene expression in licorice roots treated with methyl jasmonate and salicylic acid using real-time qPCR. - Russ. J. Plant. Physiol. 57: 480-484, 2010. Go to original source...
  51. Silva, R.L.O., Silva, M.D., Neto, J.R.C.F., De Nardi, C.H., Chabregas, S.M., Burnquist, W.L., Kah, G., Benko-Iseppon, A.M., Akio Kido, E.: Validation of novel reference genes for reverse transcription quantitative real-time PCR in drought-stressed sugarcane. - Sci. World J. 2014: 357052, 2014. Go to original source...
  52. Tian, C., Jiang, Q., Wang, F., Wang, G.L., Xu, Z.S., Xiong, A.S.: Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. - PLoS ONE 10: e0117569, 2015. Go to original source...
  53. Thellin, O., Zorzi, W., Lakaye, B., Borman, D.B., Coumans, B., Hennen, G., Grisar, T., Igout, A., Heinen, E.: Housekeeping genes as internal standards: use and limits. - J. Biotechnol. 75: 291-295, 1999. Go to original source...
  54. Untergrasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Rozen, S.G.: Primer3 - new capabilities and interfaces. - Nucl. Acids Res. 40: e115, 2012. Go to original source...
  55. Udvardi, M.K., Czechowski, T., Scheible, W.R.: Eleven golden rules of quantitative RT-PCR. - Plant. Cell. 7: 1736-1737, 2008. Go to original source...
  56. Vallone, P.M., Butler, J.M.: AutoDimer: a screening tool for primer-dimer and hairpin structures. - Biotechniques 37: 226-231, 2004. Go to original source...
  57. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F.: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. - Genome. Biol. 3: 0034.1-0034.11, 2002. Go to original source...
  58. Zhang, L., He, L.L., Fu, Q.T., Xu, Z.F.: Selection of reliable reference genes for gene expression studies in the biofuel plant Jatropha curcas using real-time quantitative PCR. - Int. J. mol. Sci. 14: 24338-24354, 2013. Go to original source...
  59. Zhuang, H., Fu, Y., He, W. Wang, L., Wei, Y.: Selection of appropriate reference genes for quantitative real-time PCR in Oxytropis ochrocephala Bunge using transcriptome datasets under abiotic stress treatments. - Front. Plant Sci. 6: 475, 2015. Go to original source...
  60. Zhu, J., Zhang, L., Li, W., Han, S., Yang, W., Qi, L.: Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. - PloS ONE 8: e531968-e53196, 2013. Go to original source...