biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 61:551-556, 2017 | DOI: 10.1007/s10535-016-0669-4

Lanthanum improves the cadmium tolerance of Zea mays seedlings by the regulation of ascorbate and glutathione metabolism

H. Dai1,2,3, C. Shan4,5,*, H. Zhao2, G. Jia6, D. Chen1
1 Bio-Resources Key Laboratory of Shaanxi Province, Shaanxi University of Technology, Hanzhong, P.R. China
2 College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, P.R. China
3 Qinling-Bashan Mountains Bioresources Comprehensive Development Collaborative Innovation Center, Hanzhong, P.R. China
4 Henan Institute of Science and Technology, Xinxiang, P.R. China
5 Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, P.R. China
6 College of Science, Northwest Agriculture and Forestry University, Yangling, P.R. China

The effect of lanthanum on the metabolism of ascorbate (AsA) and glutathione (GSH) in the leaves of maize seedlings under cadmium stress was investigated. The findings showed that Cd remarkably increased electrolyte leakage (EL), the activities of ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase (MDHAR), glutathione reductase, L-galactono-1,4-lactone dehydrogenase, and γ-glutamylcysteine synthetase, and the content of reduced AsA, reduced GSH, total AsA, total GSH, malondialdehyde (MDA), and Cd, compared with control. However, Cd significantly decreased the dry biomass of roots and shoots. Treatment with La + Cd evidently increased the activities of above enzymes except MDHAR, the content of reduced AsA, reduced GSH, total AsA and total GSH, and the dry biomass of roots and shoots, compared with Cd stress alone. Meanwhile, treatment with La + Cd remarkably decreased EL and the content of Cd and MDA compared with Cd stress alone. Our results suggested that La could be used as a regulator to improve the Cd tolerance of maize for its role in the alleviation of Cd-induced oxidative damage by regulating the metabolism of AsA and GSH.

Keywords: ascorbate peroxidase; electrolyte leakage; glutathione reductase; maize; malondialdehyde
Subjects: lanthanum; cadmium; ascorbate peroxidase; ascorbate; glutathione; glutathione reductase; gama-glutamylcysteine synthase; dehydroascorbate reductase; monodehydroascorbate reductase; malondialdehyde; maize

Received: February 25, 2016; Revised: May 9, 2016; Accepted: August 3, 2016; Published: September 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Dai, H., Shan, C., Zhao, H., Jia, G., & Chen, D. (2017). Lanthanum improves the cadmium tolerance of Zea mays seedlings by the regulation of ascorbate and glutathione metabolism. Biologia plantarum61(3), 551-556. doi: 10.1007/s10535-016-0669-4
Download citation

References

  1. Anjum, S.A., Tanveer, M., Hussain, S., Bao, M., Wang, L., Khan, I., Ullah, E., Tung, S.A., Samad, R.A., Shahzad, B.: Cadmium toxicity in maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. - Environ. Sci. Pollut. Res. 22: 17022-17030, 2015. Go to original source...
  2. Arafa, A.A., Khafagy, M.A., El-Banna, M.F.: The effect of glycinebetaine or ascorbic acid on grain germination and leaf structure of sorghum plants grown under salinity stress. - Aust. J. Crop Sci. 3: 294-304, 2009.
  3. Babula, P., Klejdus, B., Kovacik, J., Hedbavny, J., Hlavna, M.: Lanthanum rather than cadmium induces oxidative stress and metabolite changes in Hypericum perforatum. - J. Hazard. Mater. 286: 334-342, 2015. Go to original source...
  4. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  5. Dai, H., Shan, C., Jia, G., Yang, T., Wei, A., Zhao, H., Wu, S., Huo, K., Chen, W., Cao, X.: Responses to cadmium: tolerance, accumulation and translocation in Populus × canescens. - Water Air Soil Pollut. 224: 1504-1512, 2013. Go to original source...
  6. Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A., Evans, H.J.: Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. - Proc. nat. Acad. Sci. USA 83: 3811-3815, 1986. Go to original source...
  7. Daud, M.K., Mei, L., Azizullah, A., Dawood, M., Ali, I., Mahmood, Q., Ullah, W., Jamil, M., Zhu, S.J.: Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione. - Environ. Sci. Pollut. Res. DOI: 10.1007/s11356-016-6739-5, 2016. Go to original source...
  8. Diatloff, E., Smith, F.W., Asher, C.J.: Effects of lanthanum and cerium on the growth and mineral nutrition of corn and mungbean. - Ann. Bot. 101: 971-982, 2008. Go to original source...
  9. Grace, S.C., Logan, B.A.: Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. - Plant Physiol. 112: 1631-1640, 1996. Go to original source...
  10. Griffith, O.W.: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. - Anal. Biochem. 106: 207-212, 1980. Go to original source...
  11. Guan, C.F., Ji, J., Wu, D.Y., Li, X.Z., Jin, C., Guan, W.Z., Wang, G.: The glutathione synthesis may be regulated by cadmium-induced endogenous ethylene in Lycium chinense, and overexpression of an ethylene responsive transcription factor gene enhances tolerance to cadmium stress in tobacco. - Mol. Breed. 35: 123, 2015. Go to original source...
  12. Guo, B., Xu, L., Guan, Z., Wei, Y.: Effect of lanthanum on rooting of in vitro regenerated shoots of Saussurea involucrata Kar. et Kir. - Biol. Trace Element Res. 147: 334-340, 2012. Go to original source...
  13. Hodges, M.D., DeLong, J.M., Forney, C.F., Prange, R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. - Planta 207: 604-611, 1999. Go to original source...
  14. Hong, F., Wang, L., Liu, C.: Study of lanthanum on seed germination and growth of rice. - Biol. Trace Element Res. 94: 273-286, 2003. Go to original source...
  15. Hu, X., Wang, X., Wang, C.: Bioaccumulation of lanthanum and its effect on growth of maize seedlings in a red loamy soil. - Pedosphere 16: 799-805, 2006. Go to original source...
  16. Kampfenkel, K., Van Montagu, M., Inze, D.: Effects of iron excess on Nicotiana plumbaginifolia plants (implications to oxidative stress). - Plant Physiol. 107: 725-735, 1995. Go to original source...
  17. Khafagy, M.A., Arafa, A.A., El-Banna, M.F.: Glycinebetaine and ascorbic acid can alleviate the harmful effects of NaCl salinity in sweet pepper. - Aust. J. Crop Sci. 3: 257-267, 2009.
  18. Liu, D., Wang, X., Zhang, X., Gao, Z.: Effects of lanthanum on growth and accumulation in roots of rice seedlings. - Plant Soil Environ. 5: 196-200, 2013. Go to original source...
  19. Miyake, C., Asada, K.: Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. - Plant Cell Physiol. 33: 541-553, 1992.
  20. Naïja, A., Marchand, J., Kestemont, P., Haouas, Z., Blust, R., Chénais, B., Helal, A.N.: Biomarkers assessment in the peacock blenny Salaria pavo exposed to cadmium. - Environ. Sci. Pollut. Res. DOI:10.1007/s11356-016-6754-6, 2016. Go to original source...
  21. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. - Plant Cell Physiol. 22: 867-880, 1981.
  22. Rüegsegger, A., Brunold, C. Effect of cadmium on γ- glutamylcysteine synthesis in maize seedlings. - Plant Physiol. 99: 428-433, 1992. Go to original source...
  23. Shan, C., He, F., Xu, G., Han, R., Liang, Z.: Nitric oxide is involved in the regulation of ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. - Biol. Plant. 56: 187-191, 2012. Go to original source...
  24. Shan, C., Liang, Z.: Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. - Plant Sci. 178: 130-139, 2010. Go to original source...
  25. Shan, C., Zhao, X.: Effects of lanthanum on the ascorbate and glutathione metabolism of Vigna radiata seedlings under salt stress. - Biol. Plant. 58: 595-599, 2014. Go to original source...
  26. Tabata, K., Oba, K., Suzuki, K., Esaka, M.: Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA of L-galactono-1,4-lactone dehydrogenase. - Plant J. 27: 139-148, 2001. Go to original source...
  27. Tamas, L., Mistrik, I., Alemayehu, A., Zelinova, V., Bocova, B., Huttova, J.: Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxinmediated reactive oxygen species production in barley root tips. - J. Plant Physiol. 173: 1-8, 2015. Go to original source...
  28. Wang, C.R., Xiao, J.J., Tian, Y., Bao, X., Liu, L., Yu, Y., Wang, X.R., Chen, T.Y.: Antioxidant and prooxidant effects of lanthanum ions on Vicia faba L. seedlings under cadmium stress, suggesting ecological risk. - Environ. Toxicol. Chem. 31: 1355-1362, 2012. Go to original source...
  29. Wu, Z.C., Zhao, X.H., Sun, X.C., Tan, Q.L., Tang, Y.F., Nie, Z.J., Qu, C.J., Chen, Z.X., Hu, C.X.: Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. - Chemosphere 138: 526-536, 2015. Go to original source...
  30. Xu, C.M., Zhao, B., Wang, X.D., Wang, Y.C.: Lanthanum relieves salinity-induced oxidative stress in Saussurea involucrate. - Biol. Plant. 51: 567-570, 2007. Go to original source...
  31. Zhang, L., Zeng, F., Xiao, R.: Effect of lanthanum ions (La3+) on the reactive oxygen species scavenging enzymes in wheat leaves. - Biol. Trace Element Res. 91: 243-252, 2003. Go to original source...
  32. Zhou, J., Fang, L., Li, X., Guo, L., Huang, L.: Jasmonic acid (JA) acts as a signal molecule in LaCl3-induced baicalin synthesis in Scutellaria baicalensis seedlings. - Biol. Trace Element Res. 148: 392-395, 2012. Go to original source...