Biologia plantarum 61:751-762, 2017 | DOI: 10.1007/s10535-017-0721-z
Utilization of urea by leaves of bromeliad Vriesea gigantea under water deficit: much more than a nitrogen source
- 1 Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- 2 Institute of Botany, IBT, São Paulo, Brazil
Vriesea gigantea Gaudichaud is an epiphytic bromeliad with a high capacity to take up urea. In plants, urea is hydrolyzed by urease into ammonium and CO2, providing nitrogen to the plant. Most studies of urea nutrition have focused only on nitrogen metabolism, whereas scarce attention has been given to CO2 assimilation. Therefore, this study attempted to investigate whether urea could play an important role as a carbon source, which could be of a significant importance under water deficit conditions because of the limitation in atmospheric CO2 influx into the leaves due to stomatal closure. In this study, detached leaves of V. gigantea were exposed to water deficit and supplied with urea. The most photosynthetic parts of the leaf (mainly the apical leaf portion) showed higher urease activities and CO2 buildup near chloroplasts, particularly during the nighttime under water deficit conditions when compared to urea application without the water deficit. Moreover, part of the CO2 generated from urea hydrolysis was fixed into malate, probably via phosphoenolpyruvate carboxylase. Therefore, urea may contribute to the carbon balance of plants under water deficit conditions. Our data suggest that, besides being a source of nitrogen, urea might also be an important carbon source during CO2-limited conditions in leaves of epiphytic bromeliads.
Keywords: carbon dioxide assimilation; malate; phosphoenolpyruvate carboxylase; urease
Subjects: urea; water stress; nitrogen; carbon dioxide assimilation; phosphoenolpyruvate carboxylase; urease; relative water content; net photosynthetic rate; bromeliad
Received: May 12, 2016; Revised: December 10, 2016; Accepted: December 15, 2016; Published: December 1, 2017 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
| Download file | bpl-201704-0018_S1.pdf File size: 127.08 kB |
References
- Alexandersson, E., Fraysse, L., Sjövall-Larsen, S., Gustavsson, S., Fellert, M., Karlsson, M., Johanson, U., Kjellbom, P.: Whole gene family expression and drought stress regulation of aquaporins. - Plant. mol. Biol. 59: 469-84, 2005.
Go to original source... - Amtmann, A., Blatt, M.R.: Regulation of macronutrient transport. - New. Phytol. 181: 35-52, 2008.
Go to original source... - Aubry, S., Brown, N.J., Hibberd, J.M.: The role of proteins in C3 plants prior to their recruitment into the C4 pathway. - J. exp. Bot. 62: 3049-3059, 2011.
Go to original source... - Barrs, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. - Aust. J. biol. Sci. 15: 413-428, 1962.
Go to original source... - Benzing, D.H. (ed.): Vascular Epiphytes: General Biology and Related Biota. - Cambridge Press, Cambridge 1990.
Go to original source... - Benzing, D.H. (ed.): Bromeliaceae: Profile of Anadaptative Radiation. - Cambridge Press, Cambridge 2000.
Go to original source... - Benzing, D.H., Henderson, K., Kessel, B., Sulak, J.: The absorptive capacities of bromeliad trichomes. - Amer. J. Bot. 63: 1009-1014, 1976.
Go to original source... - Borland, A.M., Técsi, L.I., Leegood, R.C., Walker, R.P.: Inducibility of crassulacean acid metabolism (CAM) in Clusia species; physiological/biochemical characterization and intercellular localization of carboxylation and decarboxylation processes in three species which exhibit different degrees of CAM. - Planta 205: 342-351, 1998.
Go to original source... - Borland, A.M., Zambrano, V.A.B., Ceusters. J., Shorrock, K.: The photosynthetic plasticity of crassulacean acid metabolism: an evolutionary innovation for sustainable productivity in a changing world. - New Phytol. 191: 619-633, 2011.
Go to original source... - Cambui, C.A., Gaspar, M., Mercier, H.: Detection of urease in the cell wall and membranes from leaf tissues of bromeliad species. - Physiol. Plant. 136: 86-93, 2009.
Go to original source... - Cambui, C.A., Svennerstam, H., Gruffman, L., Nordin, A., Ganeteg, U., Näsholm, T.: Patterns of plant biomass partitioning depend on nitrogen source. - PLoS ONE 6: e19211, 2011.
Go to original source... - Cao, F.Q., Werner, A.K., Dahncke, K., Romeis, T., Liu, L.H., Witte, C.P.: Identification and characterization of proteins involved in rice urea and arginine catabolism. - Plant. Physiol. 154: 98-108, 2010.
Go to original source... - Cape, J.N., Cornell, S.E., Jickells, T.D., Nemitz, E.: Organic nitrogen in the atmosphere ? Where does it come from? A review of sources and methods. - Atmos. Res. 102: 30-48, 2011.
Go to original source... - Chapin, F.S.,III., Moilainen, L., Kielland, K.: Preferential use of organic nitrogen by a non-micorrhizal arctic sedge. - Nature 361: 150-153, 1993.
Go to original source... - Cornic, G.: Drought stress inhibits photosynthesis by decreasing stomatal aperture not by affecting ATP synthesis. - Trends. Plant. Sci. 5: 187-188, 2000.
Go to original source... - Cornic, G., Fresnau, C.: Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. - Ann. Bot. 89: 887-894, 2002.
Go to original source... - Cowling, S.A.: Did early land plants use carbon concentrating mechanisms? - Trends Plant. Sci. 18: 120-124, 2013.
Go to original source... - Cushman, J.C., Borland, A.M.: Induction of crassulacean acid metabolism by water limitation. - Plant Cell Environ. 24: 31-40, 2002.
Go to original source... - Doubnerová, V., Ryslavá, H.: What can enzymes of C4 photosynthesis do for C3 plants under stress?. - Plant Sci. 180: 575-583, 2011.
Go to original source... - Endres, L., Mercier, H.: Influence of nitrogen forms on the growth and nitrogen metabolism of bromeliads. - J. Plant. Nutr. 24: 29-42, 2001.
Go to original source... - Follmer, C.: Insights into the role and structure of plant ureases. - Phytochemistry 69: 18-28, 2008.
Go to original source... - Freschi, L., Takahashi, C.A., Cambuí, C.A., Semprebom, T.R., Cruz, A.B., Mioto, P.T., De Melo, L.V., Calvente, A., Latansio-Aidar S.R., Aidar, M.P., Mercier, H.: Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage. - J. Plant Physiol. 167: 526-533, 2010.
Go to original source... - Freschi, L., Mercier, H.: Connecting environmental stimuli and crassulacean acid metabolism expression: phytohormones and other signaling molecules. - In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (ed.): Progress in Botany. Vol. 73. Pp 231-255. Springer-Verlag, Berlin - Heidelberg 2012.
Go to original source... - Gaspar, M., Bousser, A., Sissoëff, I., Roche, O., Hoarau, J., Mahe, A.: Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. - Plant Sci. 165: 21-31, 2003.
Go to original source... - Gerendás, J., Sattelmacher, B. Significance of Ni supply for growth, urease activity and the concentrations of urea, amino acids and mineral nutrients of urea grow plants. - Plant Soil 190: 153-162, 1999.
- Gonzalez, M.C., Sanchez, R., Cejudo, F.J.: Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. - Planta 216: 985-992, 2003.
Go to original source... - Gruffman, L., Jämtgård, S., Näsholm, T.: Plant nitrogen status and co-occurrence of organic and inorganic nitrogen sources influence root uptake by Scots pine seedlings. - Tree Physiol. 34: 205-213, 2014.
Go to original source... - Hogan, M.E., Swift, I.E., Done, J.: Urease assay and ammonia release from leaf tissues. - Phytochemistry 22: 663-667, 1983.
Go to original source... - Hýsková, V., Miedzínska, L., Dobrá, J., Vankova, R., Ry¹lavá, H.: Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress. - J. Plant Physiol. 171: 19-25, 2014.
Go to original source... - Inselsbacher, E., Cambui, C.A., Richter, A., Stange, C.F., Mercier, H., Wanek, W.: Microbial activities and foliar uptake of nitrogen in the epiphytic bromeliad Vriesea gigantea. - New Phytol. 175: 311-320, 2007.
Go to original source... - Jämtgård, S., Näsholm, T., Huss-Danell, K.: Characteristics of amino acid uptake in barley. - Plant Soil 302: 221-231, 2008.
Go to original source... - Kielland, K.: Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. - Ecology 75: 2373-2383, 1994.
Go to original source... - Kjellbom, P., Larsson, C., Johansson, I., Karlsson, M., Johanson, U.: Aquaporins and water homeostasis in plants. - Trends. Plant Sci. 4: 308-314, 1999.
Go to original source... - Knudson, L.: A new nutrient solution for germination for orchid seed. - Amer. Orchid Soc. Bull. 15: 214-217, 1946.
- Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. - Plant Cell Environ. 25: 275-294, 2002.
Go to original source... - Leroy, C., Carrias, J.F., Corbara, B., Pélozuelo, L., Dézerald, O., Brouard, O., Dejean, A., Céréghino, R.: Mutualistic ants contribute to tank-bromeliad nutrition. - Ann. Bot. 112: 919-926, 2013.
Go to original source... - Lian, H.L., Xin, Y., Qin, Y., Ding, X.S., Kitagawa, Y., Kwak, S.S., Su, W.A., Tang, Z.C.: The role of aquaporin RWC3 in drought avoidance in rice. - Plant Cell Physiol. 45: 481-489, 2004.
Go to original source... - Lipson, D., Näsholm, T.: The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. - Oecologia 128: 305-316, 2001.
Go to original source... - Liu, L.H., Ludewig, U., Gassert, B., Frommer, W.B., Von Wirén, N.: Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. - Plant Physiol. 133: 1220-1228, 2003.
Go to original source... - Lopez, L.C.S., Rodrigues, P.J.F.P., Rios, R.I.: Frogs and snakes as phoretic dispersal agents of bromeliad ostracods (Limnocytheridae: Elpidium) and annelids (Naididae: Dero). - Biotropica 31: 705-708, 1999.
Go to original source... - Matiz, A., Mioto, P.T., Mayorga, A.Y., Freschi, L., Mercier, H.: CAM photosynthesis in bromeliads and agaves: what can we learn from these plants?. - In: Dubinsky, Z. (ed.): Photosynthesis. Vol. 1. Pp. 91-134. Intech, Rijeka 2013.
Go to original source... - Maxwell, K.: Resistance is useful: diurnal patterns of photosynthesis in C3 and crassulacean acid metabolism epiphytic bromeliads. - Funct. Plant Biol. 29: 679-687, 2002.
Go to original source... - Maxwell, C., Griffiths, H., Borland, A.M., Young, A.J., Broadmeadow, M.S.J., Fordham, M.C.: Short-term photosynthetic responses of the C3-CAM epiphyte Guzmania monostachia var. monostachia to tropical seasonal transitions under field conditions. - Aust. J. Plant Physiol. 22: 771-781, 1995.
Go to original source... - McCullough, H.: The determination of ammonia in whole blood by a direct colorimetric method. - Clin. chim. Acta 17: 297-304, 1967.
Go to original source... - Medina, E., Ziegler, H., Lüttge, U., Trimborn, P., Francisco, M.: Light conditions during growth as revealed by δ13C values of leaves of primitive cultivars of Ananas comosus, an obligate CAM species. - Funct. Ecol. 8: 298-305, 1994.
Go to original source... - Mercier, H., Kerbauy, G.B., Sotta, B., Miginiac, E. Effects of NO3 -, NH4 + and urea nutrition on endogenous levels of IAA and four cytokinins in two epiphytic bromeliads. - Plant Cell Environ. 20: 387-392, 1997.
Go to original source... - Mérigout, P., Lelandais, M., Bitton, F., Renou, J.P., Briand, X., Meyer, C., Daniel-Vedele, F.: Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. - Plant Physiol. 147: 1225-1238, 2008.
Go to original source... - Millanes, A.M., Fontaniella, B., Garcia, M.L., Solas, M.T., Vicente, C., Legaz, M.E.: Cytochemical location of urease in cell wall of two different lichen phycobionts. - Tissue Cell 36: 373-377, 2004.
Go to original source... - Mioto, P.T., Mercier, H.: Abscisic acid and nitric oxide signaling in two different portions of detached leaves of Guzmania monostachia with CAM up-regulated by drought. - J. Plant Physiol. 170: 996-1002, 2013.
Go to original source... - Mioto, P.T., Rodrigues, M.A., Matiz, A., Mercier, H.: CAMlike traits in C3 plants: biochemistry and stomatal behavior. - In: Lüttge, U., Beyschlag, W. (ed.): Progress in Botany. Vol. 76. Pp. 195-209. Springer-Verlag, Berlin - Heidelberg 2015.
Go to original source... - Moons, A., Valcke, R., Van Montagu, M. Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant. - Plant J. 15: 89-98, 1998.
Go to original source... - Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue culture. - Physiol. Plant. 15: 473-479, 1962.
Go to original source... - Näsholm, T., Kielland, K., Ganeteg, U.: Uptake of organic nitrogen by plants. - New Phytol. 182: 31-48, 2009.
Go to original source... - O'Leary, B., Park, J., Plaxton, W.C.: The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and posttranslational controls of non-photosynthetic PEPCs. - Biochem. J. 436: 15-34, 2011.
Go to original source... - Paungfoo-Lonhienne, C., Lonhienne, T.G.A., Rentsch, D., Robinson, N., Christie, M., Webb, R.I., Gamage, H.K., Carroll, B.J., Schenk, P.M., Schmidt, S.: Plants can use protein as a nitrogen source without assistance from other organisms. - Proc. nat. Acad. Sci. USA 105: 4524-4529, 2008.
Go to original source... - Paungfoo-Lonhienne, C., Visser, J., Lonhienne, T.G.A., Schmidt, S.: Past, present and future of organic nutrients. - Plant Soil 359: 1-18, 2012.
Go to original source... - Persson, J., Näsholm, T.: Amino acid uptake: a widespread ability among boreal forest plants. - Ecol. Lett. 4: 434-438, 2001.
Go to original source... - Popp, M., Janett, H.P., Lüttge, U., Medina, E.: Metabolite gradients and carbohydrate translocation in rosette leaves of CAM and C3 bromeliads. - New Phytol. 157: 649-656, 2003.
Go to original source... - Rademacher, T., Haüsler, R.E., Heinz, J.H., Zhang, L., Lipka, V., Weier, D., Kreuzaler, F., Peterhänsel, C.: An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. - Plant J. 32: 25-39, 2002.
Go to original source... - Rodrigues, M.A., Hamachi, L., Mioto., P.T., Purgatto, E., Mercier, H.: Implications of leaf ontogeny on droughtinduced gradients of CAM expression and ABA levels in rosettes of the epiphytic tank bromeliad Guzmania monostachia. - Plant Physiol. Biochem. 108: 400-411, 2016.
Go to original source... - Romero, G.Q., Mazzafera, P., Vasconcellos-Neto, J., Trivelin, P.C.O.: Bromeliad-living spiders improve host plant nutrition and growth. - Ecology 87: 803-808, 2006.
Go to original source... - Romero, G.Q., Nomura, F., Gonçalves, A.Z., Dias, N.Y.N., Mercier, H., Conforto, E.C., Rossa-Feres, D.C.: Nitrogen fluxes from treefrogs to tank epiphytic bromeliads: an isotopic and physiological approach. - Oecologia 162: 941-949, 2010.
Go to original source... - Romero, G.Q., Vasconcellos-Neto, J., Trivelin, P.C.O. Spatial variation in the strength of mutualism between a jumping spider and a terrestrial bromeliad: evidence from the stable isotope 15N. - Acta oecol. 33: 380-386, 2008.
Go to original source... - Schimel, J.P., Chapin, F.S. III.: Tundra plant uptake of amino acid and NH4 + nitrogen in situ: plants compete well for amino acid N. - Ecology 77: 2141-2147, 1996.
Go to original source... - Svennerstam, H., Jämtgård, S., Ahmad, I., Huss-Danell, K., Näsholm, T., Kielland, K., Ganeteg, U. Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations. - New Phytol. 191: 459-467, 2011.
Go to original source... - Takahashi, C.A., Ceccantini, G.C.T., Mercier, H.: Differential capacity of nitrogen assimilation between apical and basal leaf portions of a tank epiphytic bromeliad. - Braz. J. Plant Physiol. 19: 119-126, 2007.
Go to original source... - Takahashi, C.A., Mercier, H.: Nitrogen metabolism in leaves of a tank epiphytic bromeliad: characterization of a spatial and functional division. - J. Plant Physiol. 168: 1208-1216, 2011.
Go to original source... - Vera-Estrella, R., Barkla, B.J., Amezcua-Romero, J.C., Pantoja, O.: Day/night regulation of aquaporins during the CAM cycle in Mesembryanthemum crystallinum. - Plant Cell Environ. 35: 485-501, 2012.
Go to original source... - Wang, W.H., Köhler, B., Cao, F.Q., Liu, L.H.: Molecular and physiological aspects of urea transport in higher plants. - Plant Sci. 175: 467-477, 2008.
Go to original source... - Weatherburn, M.W.: Phenol-hypochlorite reaction for determination of ammonia. - Anal. Chem. 39: 971-974, 1967.
Go to original source... - Wilkinson, S., Davies, W.J.: ABA-based chemical signalling: the co-ordination of responses to stress in plants. - Plant Cell Environ. 25: 195-210, 2002.
Go to original source... - Winter, K., Garcia, M., Holtum, J.A.M.: On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. - J. exp. Bot. 59: 1829-1840, 2008.
Go to original source... - Witte, C.P., Tiller, S.A., Taylor, M.A., Davies, H.V.: Leaf urea metabolism in potato urease activity profile and patterns of recovery and distribution of 15N after foliar urea application in wild-type and urease-antisense transgenics. - Plant Physiol. 128: 1129-1136, 2002.
Go to original source... - Witte, C.P.: Urea metabolism in plants. - Plant Sci. 180: 431-438, 2011.
Go to original source... - Zambelli, B., Musiani, F., Benini, S., Ciurli, S.: Chemistry of Ni2+ in urease: Sensing, trafficking, and catalysis. - Accounts chem. Res. 44: 520-530, 2011.
Go to original source... - Zotz, G., Reichling, P., Valladares, F.: A simulation study on the importance of size- related changes in leaf morphology and physiology for carbon gain in an epiphytic bromeliad. - Ann. Bot. 90: 437-443, 2002.
Go to original source...



