biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 63:54-58, 2019 | DOI: 10.32615/bp.2019.007

Arabidopsis KIN gamma subunit 1 has a potential to regulate activity of sucrose nonfermenting 1-related protein kinase 2s (SnRK2s) in vitro

M. Punkkinen1, K. Denessiouk1,2, H. Fujii1,*
1 Molecular Plant Biology Unit, Department of Biochemistry, University of Turku, Turku, Finland
2 Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland

Plants must precisely regulate their signalling pathways to respond to environmental changes promptly. Sucrose non fermenting1 (SNF1)-related protein kinases (SnRK) 2 are essential kinases in abiotic stress responses, including responses to abscisic acid. Although homologs of SnRKs in yeast require a γ-subunit for full activation, it has been unclear whether SnRK2s in higher plants are affected by γ-subunits. In this report, we aimed to show the effect of Arabidopsis KIN γ-subunit 1 (KING1), which is a potential γ-subunit, on the activity of SnRK2. A recombinant KING1 bound to SnRK2.6 and functionally inhibited its activity in vitro. On the other hand, KING1 facilitated the activity of SnRK2.2. Structural models suggest that significant structural changes occurred as a result of KING1 binding to the C-terminal tail of SnRK2s. Since KING1 inhibited the kinase activity of a chimeric protein consisting of the N-terminal domain of SnRK2.6 and the C-terminal domain of SnRK2.2, regulation by KING1 was determined by the N-terminal domain of SnRK2s. Together, these results show that KING1 can mediate activity of SnRK2s in vitro.

Keywords: abscisic acid, activation of kinase, structural models.

Accepted: November 13, 2018; Prepublished online: November 14, 2018; Published online: January 19, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Punkkinen, M., Denessiouk, K., & Fujii, H. (2019). Arabidopsis KIN gamma subunit 1 has a potential to regulate activity of sucrose nonfermenting 1-related protein kinase 2s (SnRK2s) in vitro. Biologia plantarum63, Article 54-58. https://doi.org/10.32615/bp.2019.007
Download citation

Supplementary files

Download filePUNK5605Suppl.pdf

File size: 1.84 MB

References

  1. Bitrián, M., Roodbarkelari, F., Horváth, M., Koncz, C.: BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits. - Plant J. 65: 829-842, 2011. Go to original source...
  2. Boudsocq, M., Barbier-Brygoo, H., Laurière, C.: Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stress in Arabidopsis thaliana. - J. biol. Chem. 279: 41758-41766, 2004. Go to original source...
  3. Bouly, J.-P., Gissot, L., Lessard, P., Kreis, M., Thomas, M.: Arabidopsis thaliana proteins related to the yeast SIP and SNF4 interact with AKINα1, an SNF1-like protein kinase. - Plant J. 18: 541-550, 1999. Go to original source...
  4. Celenza, J.L., Carlson, M.: Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. - Mol. cell. Biol. 9: 5034-5044, 1989. Go to original source...
  5. Emanuelle, S., Hossain, M.I., Moller, I.E., Pedersen, H.L., Van de Meene, A.M.L., Doblin, M.S., Koay, A., Oakhill, J.S., Scott, J.W., Willats, W.G., Kemp, B.E., Bacic, A., Gooley, P.R., Stapleton, D.I.: SnRK1 from Arabidopsis thaliana is an atypical AMPK. - Plant J. 82: 183-192, 2015. Go to original source...
  6. Fujii, H., Chinnusamy, V., Rodrigues A., Rubio S., Antoni R., Park, S.-Y. et al.: In vitro reconstitution of an ABA signaling pathway. - Nature 462: 660-664, 2009. Go to original source...
  7. Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K.: Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. - Proc. nat. Acad. Sci. USA 103: 1988-1993, 2006. Go to original source...
  8. Gissot, L., Polge, C., Jossier, M., Girin, T., Bouly, J.-P., Kreis, M., Thomas, M.: AKINβγ contributes to SnRK1 heterotrimeric complexes and interacts with two proteins implicated in plant pathogen resistance through its KIS/GBD sequence. - Plant Physiol. 142: 931-944, 2006. Go to original source...
  9. Hardie, D.G.: AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. - Genes Dev. 25: 1895-1908, 2011. Go to original source...
  10. Hrabak, E.M., Chan, C.W.M., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N, Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker-Simmons, K., Zhu, J.-K., Harmon, A.C.: The Arabidopsis CDPK-SnRK superfamily of protein kinases. - Plant Physiol. 132: 666-680, 2003. Go to original source...
  11. Joshi-Saha, A., Valon, C., Leung, J.: A brand new START: abscisic acid perception and transduction in the guard cell. - Sci. Signal. 4 (201): re4, 2011. Go to original source...
  12. Kleinow, T., Bhalerao, R., Breuer, F., Umeda, M., Salchert, K., Koncz, C.: Functional identification of an Arabidopsis Snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast. - Plant J. 23: 115-122, 2000. Go to original source...
  13. Leung, J., Giraudat, J.: Abscisic acid signal transduction. - Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 199-222, 1998. Go to original source...
  14. Lumbreras, M.M.A., Kleinow, T., Koncz, C., Pagès, M.: Domain fusion between SNF1-related kinase subunits during plant evolution. - EMBO Rep. 2: 55-60, 2001. Go to original source...
  15. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., Grill, E.: Regulators of PP2C phosphatase activity function as abscisic acid sensors. - Science 324: 1064-1068, 2009. Go to original source...
  16. Ng, L.-M., Soon, F.-F., Zhou, X.E., West, G.M., Kovach, A., Suino-Powell, K.M., Chalmers, M.J., Li, J., Yong, E.-L., Zhu, J.-K., Griffin, P.R., Melcher, K., Xu, H.E.: Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases. - Proc. nat. Acad. Sci. USA 108: 21259-21264, 2011. Go to original source...
  17. Papdi, C., Ábrahám, E., Joseph, M.P., Popescu, C., Koncz, C., Szabados, L.: Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system. - Plant Physiol. 147: 528-542, 2008. Go to original source...
  18. Park, S.-Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Desveaux, D., Rodrigues, P.L., McCourt, P., Zhu, J.-K., Schroeder, J.I., Volkman, B.F., Cutler, S.R.: Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. - Science 324: 1068-1071, 2009. Go to original source...
  19. Ramon, M., Ruelens, P., Li, Y., Sheen, J., Geuten, K., Rolland, F.: The hybrid four-CBS-Domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. - Plant J. 75: 11-25, 2013. Go to original source...
  20. Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K.. Hibi, T., Taniguchi, M., Miyake, H., Goto, D.B., Uozumi, N.: Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. - Biochem. J. 424: 439-448, 2009. Go to original source...
  21. Soon, F.F., Ng, L.M., Zhou, X.E., West, G.M., Kovach, A., Tan, M.H., Suino-Powell, K.M., He, Y., Xu, Y., Chalmers, M.J., Brunzelle, J.S., Zhang, H., Yang, H., Jiang, H., Li, J., Yong, E.L., Cutler, S., Zhu, J.-K., Griffin, P.R., Melcher, K., Xu, H.E.: Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. - Science 335: 85-88, 2012. Go to original source...
  22. Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. - Plant Cell Physiol. 51: 1821-1839, 2010. Go to original source...
  23. Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., Leung, J., Rodriguez, P.L., Laurière, C., Merlot, S.: Protein phosphatases 2C regulate the activation of the SNF1-related kinase OST1 by abscisic acid in Arabidopsis. - Plant Cell 21: 3170-3184, 2009. Go to original source...
  24. West, G.M., Pascal, B.D., Ng, L.-M., Soon, F.-F., Melcher, K., Xu, H.E, Chalmers, M.J., Griffin, P.R.: Protein conformation ensembles monitored by HDX reveal a structural rationale for abscisic acid signaling protein affinities and activities. - Structure 21: 229-235, 2013. Go to original source...
  25. Xiao, B., Sanders, M.J., Carmena, D., Bright, N.J., Haire, L.F., Underwood, E., Patel, B.R., Heath, R.B., Walker, P.A., Hallen, S., Giordanetto, F., Martin, S.R., Carling, D., Gamblin, S.J.: Structural basis of AMPK regulation by small molecule activators. - Nat. Commun. 4: 3017, 2013. Go to original source...
  26. Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., Shinozaki, K.: The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. - J. biol. Chem. 281: 5310-5318, 2006. Go to original source...
  27. Yunta, C., Martinez-Ripoll, M., Albert, A.: SnRK2.6/OST1 from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis of K50N and D160A mutants. - Acta. Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 67: 364-368, 2011. Go to original source...