biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 63:610-617, 2019 | DOI: 10.32615/bp.2019.066

Identification of differentially expressed genes of Haloxylon ammodendronin response to salinity stress

J.F. HE1, Y.Y. FANG1, Z.X. LU3, L.W. WANG1, X.Q. ZHAO1, X.F. FU1, J. ZHAO2,*, H.K. LIU1,*
Biotechnology Research Centre, Inner Mongolia Academy of Agriculture & Animal Husbandry Sciences,
1 Hohhot, 010030, P.R. China
Reproductive Centre, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, P.R. China2
3 Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J4B1, Canada

Haloxylon ammodendron (C.A. Mey.), an endangered desert tree with excellent drought and salinity tolerance, provides a unique genotype to characterize and understand the tolerance mechanisms. In this study, four RNA-Seq libraries were constructed and sequenced from H. ammodendron under salinity stress. Total 12 027 differentially expressed genes (DEGs) were identified, in which 4 023, 3 517, 4 487 genes were differentially expressed under light salinity stress (200 mM NaCl), moderate salinity stress (400 mM NaCl), and severe salinity stress (800 mM NaCl), respectively. The up-regulated DEGs included several transcription factors (e.g., MYB and bHLH), hormone-related genes (e.g., cytochrome P450), protein kinases (e.g., Atpk2-Atpk19 like), and genes involved in carbon metabolism (e.g., UDP glycosyltransferase), osmotic regulation (e.g., proline transporter), and ubiquitin proteasome system (e.g., ubiquitin-conjugating enzymes). Heat shock proteins were identified as positive regulators of salinity tolerance in H. ammodendron. The expression patterns of 13 DEGs verified by real-time quantitative PCR were identically consistent with the variations in transcript abundance identified by RNA-Seq. Our results provide new insights into molecular mechanism of H. ammodendron in response to salinity stress.

Keywords: carbon metabolism, drought and salinity tolerance, heat shock proteins, hormone-related genes, NaCl, RNA-Seq, transcription factors.

Received: May 24, 2018; Revised: March 25, 2019; Accepted: April 8, 2019; Published online: September 16, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
HE, J.F., FANG, Y.Y., LU, Z.X., WANG, L.W., ZHAO, X.Q., FU, X.F., ZHAO, J., & LIU, H.K. (2019). Identification of differentially expressed genes of Haloxylon ammodendronin response to salinity stress. Biologia plantarum63, Article 610-617. https://doi.org/10.32615/bp.2019.066
Download citation

Supplementary files

Download fileHe5815 Suppl.pdf

File size: 297.51 kB

References

  1. Andjelkovic, V., Thompson, R.: Changes in gene expression in maize kernel in response to water and salt stress. - Plant Cell Rep. 25: 71-79, 2006. Go to original source...
  2. Audic, S., Claverie, J.M.: The significance of digital gene expression profiles. - Genome Res. 7: 986-995, 1997. Go to original source...
  3. Bak, S., Beisson, F., Bishop, G., Hamberger, B., Höfer, R., Paquette, S., Werck-Reichhart, D. (ed.): The Arabidopsis Book - Cytochromes P450. - The American Society of Plant Biologists, Washington 2011. Go to original source...
  4. Barragán, V., Leidi, E.O., Andrés, Z., Rubio, L., De Luca, A., Fernández, J.A., Cubero, B., Pardo, J.M.: Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. - Plant Cell 24: 1127-1142, 2012. Go to original source...
  5. Chang, B., Yang, L., Cong, W., Zu, Y., Tang, Z.: The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. - Plant Physiol. Biochem. 77: 140-148, 2014. Go to original source...
  6. Cockburn, W., Whitelam, G.C., Broad, A., Smith, J.: The participation of phytochrome in the signal transduction pathway of salt stress responses in Mesembryanthemum crystallinum L. - J. exp. Bot. 47: 647-53, 1996. Go to original source...
  7. De Hoon, M.J.L., Imoto, S., Satoru, M.: Open source clustering software. - Bioinformatics 20: 250-251, 2002.
  8. Fang, Y.J., You, J., Xie, K., Xie, W.B., Xiong, L.Z.: Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. - Mol. gen. Genomics 280: 547-563, 2008. Go to original source...
  9. Flowers, T. J: Improving crop salinity tolerance. - J. exp. Bot. 55: 307-319, 2004. Go to original source...
  10. Gao, S., Su, P., Yan, Q., Ding, S.: Canopy and leaf gas exchange of Haloxylon ammodendron under different soil moisture regimes. - Sci. China Life Sci. 6: 718-728, 2010. Go to original source...
  11. Ge, Y., Li, Y., Zhu, Y.M., Bai, X., Lv, D.K., Guo, D., Ji, W., Cai, H.: Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. - BMC Plant Biol. 6: 718-728, 2010. Go to original source...
  12. Hao, Y.J., Wei, W., Song, Q.X., Chen, H.W., Zhang, Y.Q., Wang, F., Zou, H.F., Lei, G., Tian, A.G., Zhang, W.K., Ma, B., Zhang, J.S., Chen, S.Y.: Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. - Plant J. 68: 302-313, 2011. Go to original source...
  13. Harris, M.A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R.: The Gene ontology (GO) data-base and informatics resource. - Nucl. Acids Res. 32: 258-261, 2004. Go to original source...
  14. He, J.F., Goyal, R.K., Laroche, A., Zhao, M.G., Lu, Z.X.: Effects of salinity stress on starch morphology, composition and physicochemical properties during grain development in triticale. - Can. J. Plant Sci. 93: 765-777, 2013. Go to original source...
  15. He, X.J., Mu, R.L., Cao, W.H., Zhang, Z.G., Zhang, J.S., Chen, S. Y.: AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. - Plant J. 44: 903-916, 2005. Go to original source...
  16. Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., Xiong, L.: Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. - Proc. nat. Acad. Sci. USA 103: 12987-12992, 2006. Go to original source...
  17. Huang, P., Ju, H.W., Min, J.H., Zhang, X., Kim, S.H., Yang, K.Y.: Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. - Plant Sci. 203: 98-106, 2013. Go to original source...
  18. Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., Parcy, F.: bZIP transcription factors in Arabidopsis. -Trends Plant Sci. 3: 106-111, 2002. Go to original source...
  19. Jeong, J.S., Kim, Y.S., Baek, K.H., Jung, H., Ha, S.H., Choi, Y.D., Kim, J.K.: Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. - Plant Physiol. 153: 185-197, 2010. Go to original source...
  20. Jia, B.W., Sun, M.Z., Duanmu, H.Z., Ding, X.D., Zhu. Y.M., Sun, X.L.: GsCHX19.3, a member of cation/H+ exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance. - Sci. Rep. 7: 9423, 2017. Go to original source...
  21. Jia, Q., Zheng, C., Sun, S., Amjad, H., Liang, K., Lin, W.: The role of plant cation/proton antiporter gene family in salt tolerance. - Biol. Plant. 62: 617-629, 2018. Go to original source...
  22. Jiang, J.J., Ma, S.H., Ye, N.H., Jiang, M., Cao, J.S., Zhang, J.H.: WRKY transcription factors in plant responses to stresses. - J. integr. Plant Biol. 59: 86-101, 2017. Go to original source...
  23. Kakumanu, A., Ambavaram, M.M.R., Klumas, C., Krishnan, A., Batlang, U., Myers, E.: Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. - Plant Physiol. 160: 846-867, 2012. Go to original source...
  24. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S.: From genomics to chemical genomics: new developments in KEGG. - Nucl. Acids Res. 34: 354-357, 2006. Go to original source...
  25. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., Bohnert, H.J.: Gene expression profiles during the initial phase of salt stress in rice. - Plant Cell 13: 889-905, 2001. Go to original source...
  26. Li, S.F., Fan, L.C.M., Li,Y., Zhang, J.H., Sun, J.H., Chen, Y.H., Tian, C.Y., Su, X.H., Lu, M.Z., Liang, C.Z., Hu, Z.M.: Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-Seq. - BMC Genomics 17: 200-209, 2016. Go to original source...
  27. Long, Y., Zhang J.W., Tian, X.J., Wu, S.S., Zhang. Q., Zhang, J.P., Dang, Z.H., Pei, X.W.: De novo assembly of the desert tree Haloxylon ammodendron (C.A. Mey) based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. - BMC Genomics 15: 1471-2164, 2014. Go to original source...
  28. Mao, G., Seebeck, T., Schrenker, D., Yu, O.: CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana. - BMC Plant Biol. 13: 169-181, 2013. Go to original source...
  29. Nam, K.H., Nam, K.J., An, J.H., Jeong, S.C., Park, K.W.: Comparative analysis of key nutrient composition between drought-tolerant transgenic rice and its non-transgenic counterpart. - Food Sci. Biotechnol. 22: 1-7, 2013. Go to original source...
  30. Naya, L., Ladrera, R., Ramos, J., González, E.M., Arrese-Igor, C., Minchin, F.R.: The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. - Plant Physiol. 144: 1104-1114, 2007. Go to original source...
  31. Niu, C.F., Wei, W., Zhou, Q.Y., Tian, A.G., Hao, Y.J., Zhang, W.K.: Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. - Plant Cell Environ. 35: 56-70, 2012. Go to original source...
  32. Powell, S. R., Herrmann, J., Lerman, A., Patterson, C., Wang, X. J.: The ubiquitin- proteasome system and cardiovascular diseases. - Prog. Mol. Biol. Transl. Sci. 109: 295-346, 2012. Go to original source...
  33. Rentsch, D., Hirner, B., Schmelzer, E., Frommer, W.B.: Salt stress-induced proline transporter and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease targeting mutant. - Plant Cell. 8: 1437-1446, 1996. Go to original source...
  34. Roy, S.J., Negrão, S., Tester, M.: Salt resistant crop plants. - Curr. Opin. Biotechnol. 26: 115-124, 2014. Go to original source...
  35. Saldanha, A.J.: Java Tree View - extensible visualization of microarray data. - Bioinformatics 20: 3246-3248, 2004. Go to original source...
  36. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y.: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full-length cDNA microarray. - Plant J. 31: 279-292, 2002. Go to original source...
  37. Sun, X.L., Yua, Q.Y., Tang, L.L., Ji, W., Bai, X., Cai, H.: GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. - J. Plant Physiol. 170: 505-515, 2013. Go to original source...
  38. Takasaki, H., Maruyama, K., Kidokoro, S., Ito, Y., Fujita, Y., Shinozaki, K.: The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. - Mol. gen. Genomics 284: 173-183. 2010. Go to original source...
  39. Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. - Plant Cell 16: 2481-2498, 2004. Go to original source...
  40. Umezawa, T., Yoshida, R., Maruyama, K., Yamaguchi-Shinozaki, K., Shinozaki, K.: SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. - Proc. natl. Acad. Sci. USA 101: 17306-17311, 2004. Go to original source...
  41. Wang. P., Ma, L., Y.L., Wang, S.: Transcriptome analysis reveals sunflower cytochrome P450 CYP93A1 responses to high salinity treatment at the seedling stage. - Genes Genomics 6: 581-591, 2017. Go to original source...
  42. Wu, H., Shabala, L., Liu, X., Azzarello, E., Zhou, M., Pandolfi, C., Bose, J., Chen, Z.H., Mancuso, S., Shabala S.: Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots. - Front. Plant Sci. 6: 71, 2015. Go to original source...
  43. Xie, T.T., Zhang, X.M., Liang, S.M., Shan, L.S., Yang, X.L., Hua, Y.H.: Effects of different irrigations on the water physiological characteristics of Haloxylon ammodendron in Taklimakan desert hinterland. - Ying Yong Sheng Tai Xue Bao 19: 711-716, 2008. [In Chin.]
  44. Yang, Y.F, Zhou, H.F, Xu, L.G.: Dynamic variations of soil moisture in Haloxylon ammodendron root zone in Gurbantunggut desert. - Ying Yong Sheng Tai Xue Bao 22: 1711-1716, 2011. [In Chin.]
  45. Ye, J., Fang, L., Zheng, H.K., Zhang, Y., Chen, J., Zhang, Z.J.: WEGO: a web tool for plotting GO annotations. - Nucl. Acids Res. 34: 293-297, 2006. Go to original source...
  46. You, Q., Zhang, L., Yi, X., Zhang, K., Yao, D., Zhang, X., Wang, Q., Zhao, X., Ling, Y., Xu, W., Li, F., Su, Z.: Co-expression network analyses identify functional modules associated with development and stress response in Gossypium arboretum. - Sci. Rep. 6: 1-15, 2016. Go to original source...
  47. Zhang, J., Feng, J.J., Lu, J., Yang, Y.Z., Zhang, X., Wan, D.S., Liu, J.Q.: Transcriptome differences between two sister desert poplar species under salt stress. - BMC Genomics 15: 337-350, 2014. Go to original source...