Biologia plantarum 63:654-661, 2019 | DOI: 10.32615/bp.2019.071
Response of two Arabidopsis ecotypes Columbia-0 and Dijon-G to necrotrophic and biotrophic pathogens
- Department of Horticultural Science, Gyeongnam National University of Science and Technology,
- 1 Jinju 52725, Republic of Korea
- 2 and Biotechnology, Daejeon 34141, Republic of Korea
- 3 Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
Arabidopsis thaliana L. ecotype Dijon-G (Di-G) showed a different symptom development during pathogenesis compared to ecotype Columbia-0 (Col-0). Previously, it has been shown that Di-G has a higher susceptibility to necrotrophic fungus Alternaria brassicicola than Col-0. In this study, Di-G showed enhanced disease susceptibility to necrotrophic fungi Botrytis cinerea, Sclerotinia sclerotiorum, and Sclerotium rolfsii known to secrete oxalic acid (OA) as a pathogenicity factor. Treatment with 50 and 100 mM OA resulted in a more leaf tissue collapse in Di-G than in Col-0. The OA also up-regulated expression of the salicylic acid (SA)-inducible pathogenesis-related gene 1 (PR1) and down-regulated expression of the jasmonic acid/ethylene-inducible defensin PDF1.2 gene in Di-G. By contrast, Di-G was resistant to hemibiotrophic fungus Colletotrichum higginsianum and biotrophic Turnip crinkle virus (TCV) infections. Application of 0.5 mM SA resulted in a higher accumulation of endogenous SA and in a preferential expression of SA-responsive genes in Di-G. Salicylic acid accelerated OA-triggered plant cell death and attenuated PDF1.2 expression in Di-G. These results suggest that the enhanced susceptibility of Di-G to necrotrophic pathogen infections might be mediated by attenuated JA-ethylene defence signalling and/or heightened SA-related defence signalling. Interaction of SA-signalling with OA secretion might be also involved in the enhanced susceptibility of Di-G.
Keywords: oxalic acid, pathogenesis-related gene PR1, plant defensin gene PDF1.2, salicylic acid.
Received: May 2, 2018; Revised: April 8, 2019; Accepted: May 6, 2019; Published online: October 22, 2019 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
| Download file | Lee5799 Suppl.pdf File size: 15.91 kB |
References
- Ahmad, S., Van Hulten, M., Martin, J., Pieterse, C.M.J., Van Wees, S.C.M., Ton, J.: Genetic dissection of basal defence responsiveness in accessions of Arabidopsis thaliana. - Plant Cell Environ. 34: 1191-1206, 2011.
Go to original source... - Bouchabke, O., Chang, F., Simon, M., Voisin, R., Pelletier, G., Durand-Tardif, M.: Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses. - PLoS ONE 3: e1705, 2008.
Go to original source... - Brosché, M., Merilo, E., Mayer, F., Pechter, P., Puzõrjova, I., Brader, G., Kangasjärvi, J., Kollist, H.: Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance. - Plant Cell Environ. 33: 914-925, 2010
Go to original source... - Chandra-Shekara, A.C., Navarre, D., Kachroo, A., Kang, H.-G., Klessig, D., Kachroo, P.: Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. - Plant J. 40: 647-659, 2004
Go to original source... - Chatfield, S.P., Raizada, M.N.: Ethylene and shoot regeneration: hookless1 modulates de novo shoot organogenesis in Arabidopsis thaliana. - Plant Cell Rep. 27: 655-666, 2008.
Go to original source... - Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. - Plant J. 16: 735-743, 1998.
Go to original source... - Dempsey, D.A., Pathirana, M.S., Wobbe, K.K., Klessig, D.F.: Identification of an Arabidopsis locus required for resistance to turnip crinkle virus. - Plant J. 11: 301-311, 1997.
Go to original source... - Denby, K.J., Kumar, P., Kliebenstein, D.J.: Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. - Plant J. 38: 473-486, 2004.
Go to original source... - Falk, A., Feys, B.J., Frost, L.N., Jones, J.D.G., Daniels, M.J., Parker, J.E.: EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. - Proc. nat. Acad. Sci. USA 96: 3292-3297, 1999.
Go to original source... - Ferrari, S., Plotnikova, J.M., De Lorenzo, G., Ausubel, F.M.: Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. - Plant J. 35: 193-205, 2003.
Go to original source... - Glazebrook, J.: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. - Annu. Rev. Phytopathol. 43: 205-227, 2005.
Go to original source... - Guo, X., Stotz, H.U.: Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. - Mol. Plant-Microbe Interact. 20: 1384-1395, 2007.
Go to original source... - Hannah, M.A., Wiese, D., Freund, S., Fiehn, O., Heyer, A.G., Hincha, D.K.: Natural genetic variation of freezing tolerance in Arabidopsis. - Plant Physiol. 142: 98-112, 2006.
Go to original source... - Jirage, D., Tootle, T.L., Reuber, T.L., Frost, L.N., Feys, B.J., Parker, J.E., Ausubel, F.M., Glazebrook, J.: Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. - Proc. nat. Acad. Sci. USA 96: 13583-13588, 1999.
Go to original source... - Kachroo, P., Yoshioka, K., Shah, J., Dooner, H.K., Klessig, D.F.: Resistance to turnip mosaic virus in Arabidopsis is required by two host genes and is salicylic acid dependent but not NPR1, ethylene, and jasmonate independent. - Plant Cell 12: 677-690, 2000.
Go to original source... - Kang, H.G., Kuhl, J.C., Kachroo, P., Klessig, D.F.: CRT1, an Arabidopsis ATPase that interacts with diverse resistance proteins and modulates disease resistance to Turnip Crinkle Virus. - Cell Host Microbe 3: 48-57, 2008.
Go to original source... - Kover, P.X., Schaal, B.A.: Genetic variation for disease resistance and tolerance among Arabidopsis thaliana accessions. - Proc. nat. Acad. Sci. USA 99: 11270-11274, 2002.
Go to original source... - Lehner, A., Meimoun, P., Errakhi, R., Madiona, K., Barakate, M., Bouteau, F.: Toxic and signalling effects of oxalic acid. - Plant Signal Behav. 3: 746-748. 2008.
Go to original source... - Leisner, S.M., Howell, S.H.: Symptom variation in different Arabidopsis thaliana ecotypes produced by cauliflower mosaic virus. - Phytopathology 82: 1042-1046, 1992.
Go to original source... - Lempe, J., Balasubramanian, S., Sureshkumar, S., Singh, A., Schmid, M., Weigel, D.: Diversity of flowering responses in wild Arabidopsis thaliana strains. - PLoS Genetics 1: e6, 2005.
Go to original source... - Leon-Reyes, A., Van der Does, D., De Lange, E.S., Delker, C., Wasternack, C., Van Wees, S. C.M., Ritsema, T., Pieterse, C.M.J.: Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. - Planta 232:1423-1432, 2010.
Go to original source... - Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Körbes, A.P., Memelink, J., Pieterse, C.M.J., Ritsema, T.: Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. - Mol. Plant-Microbe Interact. 23: 187-197, 2010.
Go to original source... - Liu, G., Kennedy, R., Greenshields, D.L., Peng, G., Forseille, L., Selvaraj, G., Wei, Y.: Detached and attached Arabidopsis leaf assays reveal distinct defense responses against hemibiotrophic Colletotrichum spp. - Mol. Plant-Microbe Interact. 20: 1308-1319, 2007.
Go to original source... - Liu, S., Ziegler, J., Zeier, J., Birkenbihl, R.P., Somssich, I.E.: Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33-mediated host immunity. - Plant Cell Environ. 40: 2189-2206, 2017.
Go to original source... - Mang, H.G., Laluk, K.A., Parsons, E.P., Kosma, D.K., Cooper, B.R., Park, H.C., AbuQamar, S., Boccongelli, C., Miyazaki, S., Consiglio, F., Chilosi, G., Bohnert, H.J., Bressan, R.A., Mengiste, T., Jenks, M.A.: The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs. - Plant Physiol. 151: 290-305, 2009.
Go to original source... - Martín, A.M., Cabrera y Poch, H.L., Martínez Herrera, D., Ponz, F.: Resistance to turnip mosaic potyvirus in Arabidopsis thaliana. - Mol. Plant-Microbe Interact. 12: 1016-1021, 1999.
Go to original source... - Martín, A.M., Martínez Herrera, D., Poch y Cabrera, H.L., Ponz, F.: Variability in the interactions between Arabidopsis thaliana ecotypes and oilseed rape mosaic tobamovirus. - Aust. J. Plant Physiol. 24: 275-281, 1997.
Go to original source... - Matthes, M.C., Pickett, J.A., Napier, J.A.: Natural variation in responsiveness of Arabidopsis thaliana to methyl jasmonate is developmentally regulated. - Planta 228: 1021-1028, 2008.
Go to original source... - Moon, J.Y., Lee, J.H., Oh, C.S., Kang, H,G., Park, J.M.: Endoplasmic reticulum stress responses function in the HRT-mediated hypersensitive response in Nicotiana benthamiana. - Mol. Plant Pathol. 17: 1382-1397, 2016.
Go to original source... - Mukherjee, A.K., Lev, S., Gepstein, S., Horwitz, B.A.: A compatible interaction of Alternaria brassicicola with Arabidopsis thaliana ecotype DiG: evidence for a specific transcriptional signature. - BMC Plant Biol. 9: 31. 2009.
Go to original source... - Nandi, A., Moeder, W., Kacchroo, P., Klessig, D.F., Shah, J.: Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4. - Mol. Plant-Microbe Interact. 18:363-370, 2005.
Go to original source... - Nam, J., Mattysse, A.G., Gelvin, S.B.: Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. - Plant Cell 9: 317-333, 1997.
Go to original source... - Narusaka, M., Yao, N., Iuchi, A., Iuchi, S., Shiraishi, T., Narusaka, Y.: Identification of Arabidopsis thaliana accession with resistance to Botrytis cinerea by natural variation analysis, and characterization of the resistance response. - Plant Biotechnol. 30: 89-95, 2013.
Go to original source... - Narusaka, Y., Narusaka, M., Park, P., Kubo, Y., Hirayama, T., Seki, M., Shiraishi, T., Ishida, J., Nakashima, M., Enju, A., Sakurai, T., Satou, M., Kobayashi, M., Shinozaki, K.: RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. - Mol. Plant-Microbe Interact. 17: 749-762, 2004.
Go to original source... - Nawrath, C., Heck, S., Parinthawong, N., Métraux, J.-P.: EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. - Plant Cell 14: 275-286, 2002.
Go to original source... - Nawrath, C., Métraux, J.-P.: Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. - Plant Cell 11: 1393-1404, 1999.
Go to original source... - Pan, X., Welti, R., Wang, X.: Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. - Nat. Protocol 5: 986-992, 2010.
Go to original source... - Park, J.M., Klessig, D.F.: HRT-mediated Turnip crinkle virus resistance in Arabidopsis. - Plant Pathol. J. 19: 19-23, 2003.
Go to original source... - Perchepied, L., Kroj, T., Tronchet, M., Loudet, O., Roby, D.: Natural variation in partial resistance to Pseudomonas syringae is controlled by two major QTLs in Arabidopsis thaliana. - PLoS ONE 1: e123, 2006.
Go to original source... - Pieterse, C.M.J., Leon-Reyes, A., Van der Ent, S., Van Wees, S.C.M.: Networking by small-molecule hormones in plant immunity. - Natur. chem. Biol. 5: 308-316, 2009.
Go to original source... - Rowe, H.C., Kliebenstein, D.J.: Complex genetic control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. - Genetics 180: 2237-2250, 2008.
Go to original source... - Schenk, P.M., Kazan, K., Manners, J.M., Anderson, J.P., Simpson, R.S., Wilson, I.W., Somerville, S.C., Maclean, D.J.: Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. - Plant Physiol. 132: 999-1010, 2003.
Go to original source... - Song, G.C., Lee, S., Hong, J., Choi, H.K., Hong, G.H., Bae, D.W., Mysore, K.S., Park, Y.-S., Ryu, C.-M.: Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation. - New Phytol. 207: 148-158, 2015.
Go to original source... - Spoel, S.H., Johnson, J.S., Dong, X.: Regulation of trade offs between plant defenses against pathogens with different lifestyles. - Proc. nat. Acad. Sci. USA 104: 18842-18847, 2007.
Go to original source... - Van Leeuwen, H., Kliebenstein, D.J., West, M.A.L., Kim, K., Van Poecke, R., Katagiri, F., Michelmore, R.W., Doerge, R.W., St. Clair, D.A.: Natural variation among Arabidopsis thaliana accessions for transcriptome response to exogenous salicylic acid. - Plant Cell 19: 2099-2110, 2007.
Go to original source... - Van Wees, S.C.M., Chang, H.S., Zhu, T., Glazebrook, J.: Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. - Plant Physiol. 132: 606-617, 2003.
Go to original source... - Xiao, S., Calis, O., Patrick, E., Zhang, G., Charoenwattana, P., Muskett, P., Parker, J.E., Turner, J.G.: The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. - Plant J. 42: 95-110, 2005.
Go to original source... - Zhang, L., Ackley, A.R., Pilon-Smits, E.A.H.: Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions. - J. Plant Physiol. 164: 327-336, 2007.
Go to original source...



