biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 64:1-8, 2020 | DOI: 10.32615/bp.2019.122

Silver nanoparticles with different concentrations and particle sizes affect the functional traits of wheat

S. WANG1, B. D. WU1, M. WEI1, J. W. ZHOU1,2, K. JIANG1, C.Y. WANG1,3,*
1 Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, P.R. China
2 School of the Environment, Nanjing University, Nanjing 210023, P.R. China
3 State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P.R. China

The response of functional traits of plants to external environment can influence their competitive ability because these functional traits are required for the acquisition of resources. The overuse of silver nanoparticles (AgNPs) has gained attention due to their environmental toxicity. This study aimed to examine the effects of AgNPs with different concentrations and particle sizes on functional traits of wheat. It was observed that AgNPs significantly reduced the plant height and so decrease its competitive ability. Ag ions decreased leaf chlorophyll and nitrogen content and specific leaf area more than AgNPs, but the opposite was true for leaf length, single leaf fresh mass, and shoot fresh mass. Hence, the toxicity of AgNPs may be higher than that of Ag ions in some cases. In this study, leaf chlorophyll and nitrogen content decreased with increasing concentration of AgNPs (with size 30 nm). The AgNPs with smaller particle size exerted higher toxicity on leaf chlorophyll and N content than those with larger particle size at the same concentration. However, AgNPs with larger particle size reduced more aboveground fresh mass than those with smaller particle size at the same concentration.

Keywords: Ag ions, chlorophyll, competitive ability, nitrogen, resource acquisition, specific leaf area, toxicity.

Received: February 1, 2019; Revised: August 10, 2019; Accepted: September 20, 2019; Published online: January 9, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
WANG, S., WU, B.D., WEI, M., ZHOU, J.W., JIANG, K., & WANG, C.Y. (2020). Silver nanoparticles with different concentrations and particle sizes affect the functional traits of wheat. Biologia plantarum64, Article 1-8. https://doi.org/10.32615/bp.2019.122
Download citation

Supplementary files

Download fileWang6165 Suppl.pdf

File size: 428.24 kB

References

  1. Barbasz, A., Kreczmer, B., Oĉwieja, M.: Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO3). - Acta Physiol. Plant. 38: 76, 2016. Go to original source...
  2. Batista, D., Pascoal, C., Cássio, F.: How do physicochemical properties influence the toxicity of silver nanoparticles on freshwater decomposers of plant litter in streams? - Ecotox. Environ. Safety 140: 148-155, 2017. Go to original source...
  3. Choi, O., Hu, Z.Q.: Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. - Environ. Sci. Technol. 42: 4583-4588, 2008. Go to original source...
  4. Contreras, E.Q., Puppala, H.L., Escalera, G., Zhong, W.W., Colvin, V.L.: Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans. - Environ. Toxicol. Chem. 33: 2716-2723, 2014. Go to original source...
  5. Cvjetko, P., Miloıiĉ, A., Domijan, A.-M., Vrèek, I.V., Toliĉ, S., İtefaniĉ, P.P., Letofsky-Papst, I., Tkalec, M., Balen, B.: Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. - Ecotox. Environ. Safety 137: 18-28, 2017. Go to original source...
  6. Duke, S.O., Cedergreen, N., Velini, E.D., Belz, R.G.: Hormesis: is it an important factor in herbicide use and allelopathy? - Outlooks Pest Manage. 17: 29-33, 2006.
  7. Farkas, J., Christian, P., Gallego-Urrea, J.A., Roos, N., Hassellov, M., Tollefsen, K.E., Thomas, K.V.: Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. - Aquat. Toxicol. 101: 117-125, 2011. Go to original source...
  8. Geisler-Lee, J., Wang, Q., Yao, Y., Zhang, W., Geisler, M., Li, K.G., Huang, Y., Chen, Y.S., Kolmakov, A., Ma X.M.: Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. - Nanotoxicology 7: 323-337, 2013. Go to original source...
  9. Glover, R.D., Miler, J.M., Hutchison, J.E.: Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. - ACS Nano 5: 8950-8957, 2011. Go to original source...
  10. Gomes, S.I., Soares, A.M., Scott-Fordsmand, J.J., Amorim, M.J.: Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile. - J. Hazard. Mater. 254-255: 336-344, 2013. Go to original source...
  11. Gross, N., Suding, K.N., Lavorel, S., Roumet, C.: Complementarity as a mechanism of coexistence between functional groups of grasses. - J. Ecol. 95: 1296-1305, 2007. Go to original source...
  12. Gubbins, E.J., Batty, L.C., Lead, J.R.: Phytotoxicity of silver nanoparticles to Lemna minor L. - Environ. Pollut. 159: 1551-1559, 2011. Go to original source...
  13. Guo, Z., Chen, G.Q., Zeng, G.M., Yan, M., Huang, Z.Z., Jiang, L.H., Peng, C., Wang, J.J., Xiao, Z.H.: Are silver nanoparticles always toxic in the presence of environmental anions? - Chemosphere 171: 318-323, 2017. Go to original source...
  14. Hang, Z.H., Wu, H.P.: Zhenjiang Yearbook: Overview of Zhenjiang. - In: Ye, Z.G., Yang, Z.H., Pan, Y., Zhao, Y.L. (ed.): Zhenjiang Yearbook, the first edition. Vol.26. Pp. 30-31. Publishing House of Local Records, Beijing 2017.
  15. Huang, Y.W., Wu, C.H., Aronstam, R.S.: Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. - Materials 3: 4842-4859, 2010. Go to original source...
  16. Jasim, B., Thomas, R., Mathew, J., Radhakrishnan, E.K.: Plant growth and diosgenin enhancement effect of silver nanoparticles in fenugreek (Trigonella foenum-graecum L.). - Saudi Pharm. J. 25: 443-447, 2017. Go to original source...
  17. Jeong, N., Moon, J.K., Kim, H.S., Kim, C.G., Jeong, S.C.: Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. - Theor. appl. Genet. 122: 865-874, 2011. Go to original source...
  18. Jiang, H.S., Li, M., Chang, F.Y., Li, W., Yin, L.Y.: Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. - Environ. Toxicol. Chem. 31: 1880-1886, 2012. Go to original source...
  19. Jiang, K., Wu, B.D., Wang, C.Y., Ran, Q.: Ecotoxicological effects of metals with different concentrations and types on the morphological and physiological performance of wheat. - Ecotox. Environ. Safety 167: 345-353, 2019. Go to original source...
  20. Kardel, F., Wuyts, K., Babanezhad, M., Vitharana, U.W.A., Wuytack, T., Potters, G., Samson, R.: Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. - Environ. Pollut. 158: 788-794, 2010. Go to original source...
  21. Kim, E., Kim, S.H., Kim, H.C., Lee, S.G., Lee, S.G., Jeong, S.W.: Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. - Toxicol. Environ. Health Sci. 3: 1-6, 2011. Go to original source...
  22. Kim, M.J., Kim, S.S.: Utilisation of immature wheat flour as an alternative flour with antioxidant activity and consumer perception on its baked product. - Food Chem. 232: 237-244, 2017. Go to original source...
  23. Krajcarová, L., Novotnŭ, K., Kummerová, M., Dubová, J., Gloser, V., Kaiser, J.: Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS). - Talanta 173: 28-35, 2017. Go to original source...
  24. Lee, W.M., Kwak, J.I., An, Y.J.: Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. - Chemosphere 86: 491-499, 2012. Go to original source...
  25. Li, C.C., Dang, F., Li, M., Zhu, M., Zhong, H., Hintelmann, H., Zhou, D.M.: Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. - Nanotoxicology 11: 699-709, 2017. Go to original source...
  26. Li, J.M., Du, L.S., Guan, W.B., Yu, F.H., Van Kleunen, M.: Latitudinal and longitudinal clines of phenotypic plasticity in the invasive herb Solidago canadensis in China. - Oecologia 182: 755-764, 2016. Go to original source...
  27. Liu, F.D., Yang, W.J., Wang, Z.S., Xu, Z., Liu, H., Zhang, M., Liu, Y.H., An, S.Q., Sun, S.C.: Plant size effects on the relationships among specific leaf area, leaf nutrient content, and photosynthetic capacity in tropical woody species. - Acta oecol. 36: 149-159, 2010. Go to original source...
  28. Liu, Q.L., Zhao, Y.Y., Wan, Y.L., Zheng, J.P., Zhang, X.J., Wang, C.R., Fang, X.H., Lin, J.X.: Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. - Acs. Nano 4: 5743-5748, 2010. Go to original source...
  29. Lubick, N.: Nanosilver toxicity: ions, nanoparticles or both? - Environ. Sci. Technol. 42: 8617, 2008. Go to original source...
  30. Ma, R., Levard, C., Marinakos, S.M., Cheng, Y., Liu, J., Michel, F.M., BrownJr, G.E., Lowry, G.V.: Size-controlled dissolution of organic-coated silver nanoparticles. - Environ. Sci. Technol. 46: 752-759, 2012. Go to original source...
  31. Matzke, M., Jurkschat, K., Backhaus, T.: Toxicity of differently sized and coated silver nanoparticles to the bacterium Pseudomonas putida: risks for the aquatic environment? - Ecotoxicology 23: 818-829, 2014. Go to original source...
  32. McGee, C.F., Storey, S., Clipson, N., Doyle, E.: Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. - Ecotoxicology 26: 449-458, 2017. Go to original source...
  33. McGillicuddy, E., Murray, I., Kavanagh, S., Morrison, L., Fogarty, A., Cormican, M., Dockery, P., Prendergast, M., Rowan, N., Morris, D.: Silver nanoparticles in the environment: Sources, detection and ecotoxicology. - Sci. total Environ. 575: 231-246, 2017. Go to original source...
  34. Meng, F.Q., Cao, R., Yang, D.M., Niklas, K.J., Sun, S.C.: Trade-offs between light interception and leaf water shedding: a comparison of shade- and sun-adapted species in a subtropical rainforest. - Oecologia 174: 13-22, 2014. Go to original source...
  35. Ng, C.T., Li, J.J., Bay, B.H., Yung, L.Y.L.: Current studies into the genotoxic effects of nanomaterials. - J. Nucl. Acids 2010: 947859, 2010. Go to original source...
  36. Nowack, B., Bucheli, T.D.: Occurrence, behavior and effects of nanoparticles in the environment. - Environ. Pollut. 150: 5-22, 2007. Go to original source...
  37. Pietsch, K.A., Ogle, K., Cornelissen, J.H.C., Cornwell, W.K., Bönisch, G., Craine, J.M., Jackson, B.G., Kattge, J., Peltzer, D.A., Penuelas, J., Reich, P.B., Wardle, D.A., Weedon, J.T., Wright, I.J., Zanne, A.E., Wirth, C.: Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. - Global Ecol. Biogeogr. 23: 1046-1057, 2014. Go to original source...
  38. Pourzahedi, L., Eckelman, M.J.: Environmental life cycle assessment of nanosilver-enabled bandages. - Environ. Sci. Technol. 49: 361-368, 2014. Go to original source...
  39. Pulit-Prociak, J., Stok³osa, K., Banach, M.: Nanosilver products and toxicity. - Environ. Chem. Lett. 13: 59-68, 2015. Go to original source...
  40. Rahmatpour, S., Shirvani, M., Mosaddeghi, M.R., Nourbakhsh, F., Bazarganipour, M.: Dose-response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils. - Geoderma 285: 313-322, 2017. Go to original source...
  41. Reinsch, B.C., Levard, C., Li, Z., Ma, R., Wise, A., Gregory, K.B., BrownJr, G.E., Lowry, G.V.: Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. - Environ. Sci. Technol. 46: 6992-7000, 2012. Go to original source...
  42. Scheepens, J.F., Frei, E.S., Stöcklin, J.: Genotypic and environmental variation in specific leaf area in a widespread alpine plant after transplantation to different altitudes. - Oecologia 164: 141-150, 2010. Go to original source...
  43. Schlich, K., Hoppe, M., Kraas, M., Fries, E., Hund-Rinke, K.: Ecotoxicity and fate of a silver nanomaterial in an outdoor lysimeter study. - Ecotoxicology 26: 738-751, 2017. Go to original source...
  44. Sharma, P., Bhatt, D., Zaidi, M.G., Saradhi, P.P., Khanna, P.K., Arora, S.: Silver nanoparticle mediated enhancement in growth and antioxidant status of Brassica juncea. - Appl. Biochem. Biotechnol. 167: 2225-2233, 2012. Go to original source...
  45. Sheng, Z.Y., Liu, Y.: Potential impacts of silver nanoparticles on bacteria in the aquatic environment. - J. Environ. Manage. 191: 290-296, 2017. Go to original source...
  46. Syu, Y.Y., Hung, J.H., Chen, J.C., Chuang, H.W.: Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. - Plant Physiol. Biochem. 83: 57-64, 2014. Go to original source...
  47. Thomson, F.J., Moles, A.T., Auld, T.D., Kingsford, R.T.: Seed dispersal distance is more strongly correlated with plant height than with seed mass. - J. Ecol. 99: 1299‒1307, 2011. Go to original source...
  48. Vannini, C., Domingo, G., Onelli, E., De Mattia, F., Bruni, I., Marsoni, M., Bracale, M.: Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. - J. Plant Physiol. 171: 1142-1148, 2014. Go to original source...
  49. Vile, D., Garnier, E., Shipley, B., Laurent, G., Navas, M.L., Roumet, C., Lavorel, S., Díaz, S., Hodgson, J.G., Lloret, F., Midgley, G.F., Poorter, H., Rutherford, M.C., Wilson, P.J., Wright, I.J.: Specific leaf area and dry matter content estimate thickness in laminar leaves. - Ann. Bot. 96: 1129-1136, 2005. Go to original source...
  50. Wan, R., Mo, Y.Q., Feng, L.F., Chien, S., Tollerud, D.J., Zhang, Q.W.: DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. - Chem. Res. Toxicol. 25: 1402-1411, 2012. Go to original source...
  51. Wang, C.Y., Jiang, K., Wu, B.D., Zhou, J.W., Lv, Y.N.: Silver nanoparticles with different particle sizes enhance the allelopathic effects of Canada goldenrod on the seed germination and seedling development of lettuce. - Ecotoxicology 27: 1116-1125, 2018a. Go to original source...
  52. Wang, C.Y., Jiang, K., Liu, J., Zhou, J.W., Wu, B.D.: Moderate and heavy Solidago canadensis L. invasion are associated with decreased taxonomic diversity but increased functional diversity of plant communities in East China. - Ecol. Eng. 112: 55-64, 2018b. Go to original source...
  53. Wang, C.Y., Liu, J., Xiao, H.G., Zhou, J.W.: Differences in leaf functional traits between Rhus typhina and native species. - Clean-Soil Air Water 44: 1591-1597, 2016. Go to original source...
  54. Wang, C.Y., Wu, B.D., Jiang, K., Zhou, J.W.: Differences in functional traits between invasive and native Amaranthus species under simulated acid deposition with a gradient of pH levels. - Acta oecol. 89: 32-37, 2018c. Go to original source...
  55. Wang, C.Y., Wu, B.D., Jiang, K., Zhou, J.W.: Effects of different types of heavy metal pollution on functional traits of invasive redroot pigweed and native red amaranth. - Int. J. environ. Res. 12: 419-427, 2018d. Go to original source...
  56. Wang, C.Y., Zhou, J.W., Jiang, K., Liu, J.: Differences in leaf functional traits and allelopathic effects on seed germination and growth of Lactuca sativa between red and green leaves of Rhus typhina. - S. Afr. J. Bot. 111: 17-22, 2017b. Go to original source...
  57. Wang, C.Y., Zhou, J.W., Liu, J., Jiang, K.: Differences in functional traits between invasive and native Amaranthus species under different forms of N deposition. - Sci. Nat. 104: 59, 2017a. Go to original source...
  58. Wang, C.Y., Zhou, J.W., Liu, J., Wang, L., Xiao, H.G.: Reproductive allocation strategy of two herbaceous invasive plants across different cover classes. - Pol. J. Environ. Stud. 26: 355-364, 2017d. Go to original source...
  59. Wang, C.Y., Zhou, J.W., Liu, J., Xiao, H.G., Wang, L.: Functional traits and reproductive allocation strategy of Conyza canadensis as they vary by invasion degree along a latitude gradient. - Pol. J. Environ. Stud. 26: 1289-1297, 2017e. Go to original source...
  60. Wang, J., Koo, Y., Alexander, A., Yang, Y., Westerhof, S., Zhang, Q., Schnoor, J.L., Colvin, V.L., Braam, J., Alvarez, P.J.J.: Phytostimulation of poplars and arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. - Environ. Sci. Technol. 47: 5442-5449, 2013. Go to original source...
  61. Wang, J., Shu, K.H., Zhang, L., Si, Y.B.: Effects of silver nanoparticles on soil microbial communities and bacterial nitrification in suburban vegetable soils. - Pedosphere 27: 482-490, 2017c. Go to original source...
  62. Wang, Z., Zhang, L.: Leaf shape alters the coefficients of leaf area estimation models for Saussurea stoliczkai in central Tibet. - Photosynthetica 50: 337-342, 2012. Go to original source...
  63. Wie, M.A., Oh, S.J., Kim, S.C., Kim, R.Y., Lee, S.P., Kim, W.I., Yang, J.E.: Toxicity assessment of silver ions compared to silver nanoparticles in aqueous solutions and soils using microtox bioassay. - Korean J. Soil Sci. Fert. 45: 1114-1119, 2012. Go to original source...
  64. Wild, E., Jones, K.C.: Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. - Environ. Sci. Technol. 43: 5290-5294, 2009. Go to original source...
  65. Xiu, Z.M., Ma, J., Alvarez, P.J.: Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. - Environ. Sci. Technol. 45: 9003-9008, 2011. Go to original source...
  66. Yang, Y., Quensen, J., Mathieu, J., Wang, Q.,Wang, J., Li, M., Tiedje, J.M., Alvarez, P.J.J.: Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. - Water Res. 48: 317-325, 2014. Go to original source...
  67. Yin, L.Y., Cheng, Y.W., Espinasse, B., Colman, B.P., Auffan, M., Wiesner, M., Rose, J., Liu, J., Bernhardt, E.S.: More than the ions: the effects of silver nanoparticles on Lolium multiflorum. - Environ. Sci. Technol. 45: 2360-2367, 2011. Go to original source...
  68. Yin, L.Y., Colman, B.P., McGill, B.M., Wright, J.P., Bernhardt, E.S.: Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. - PLoS ONE 7: e47674, 2012. Go to original source...
  69. Yuan, Z.H., Li, J.W., Cui, L., Xu, B., Zhang, H.W., Yu, C.P.: Interaction of silver nanoparticles with pure nitrifying bacteria. - Chemosphere 90: 1404-1411, 2013. Go to original source...
  70. Zhai, Y.J., Hunting, E.R., Wouters, M., Peijnenburg, W.J.G.M., Vijver, M.G.: Silver nanoparticles, ions, and shape governing soil microbial functional diversity: nano shapes micro. - Front. Microbiol. 7: 1123, 2016. Go to original source...
  71. Zhao, C.M., Wang, W.X.: Size-dependent uptake of silver nanoparticles in Daphnia magna. - Environ. Sci. Technol. 46: 11345-11351, 2012a. Go to original source...
  72. Zhao, C.M., Wang, W.X.: Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. - Nanotoxicology 6: 361-370, 2012b. Go to original source...
  73. Zuverza-Mena, N., Armendariz, R., Peralta-Videa, J.R., Gardea-Torresdey, J.L.: Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. - Front. Plant Sci. 7: 90, 2016. Go to original source...