biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 64:535-540, 2020 | DOI: 10.32615/bp.2020.067

Evaluation of two promoters for generating transgenic potato plants as salicylic acid biosensors

H.M. ABD EL-HALIM1,*, I.M. ISMAIL1, N.M. AL ABOUD3, D. ELGHAREEB1,4, E.A. METRY1, A.F. HOSSIEN2, E.M. FAHMY2
1 Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619, Egypt
2 Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 24381, Saudi Arabia3
4 Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 25376, Saudi Arabia

Plants are severely affected by many biotic stresses, which cause a reduction in crop quality and quantity. One of the strategies to manage biotic stresses is the generation of transgenic plant lines that can be used as biosensors. These biosensor plants can trigger an early warning upon any pathogen infection. Two promoters with β-glucuronidase reporter gene fusions were constructed. The first contained the flagellin sensing 2 gene promoter, whereas the second contained synthetic promoter containing four repeats of cis-acting elements from the pathogen-related protein 1 gene and two transcription enhancers from the 35S promoter. Transformed leaves were treated with a phytohormone salicylic acid to mimic the occurrence of biotic stress. Validation of reporter gene expression induced from both constructs in transformed potato leaves displayed an increase upon salicylic acid treatment. The results reflect that both constructs could serve in the production of potato biotic stress biosensors.

Keywords: FLS2 gene, pathogen infection, PR1 gene, synthetic promoter.

Received: September 28, 2019; Revised: April 30, 2020; Accepted: May 4, 2020; Prepublished online: September 3, 2020; Published online: August 4, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ABD EL-HALIM, H.M., ISMAIL, I.M., AL ABOUD, N.M., ELGHAREEB, D., METRY, E.A., HOSSIEN, A.F., & FAHMY, E.M. (2020). Evaluation of two promoters for generating transgenic potato plants as salicylic acid biosensors. Biologia plantarum64, Article 535-540. https://doi.org/10.32615/bp.2020.067
Download citation

Supplementary files

Download fileElhalim6330_Suppl.pdf

File size: 16.36 kB

References

  1. Aldea, M., Hamilton, J.G., Resti, J.P., Zangerl, A.R., Berenbaum, M.R., Frank, T.D., DeLucia, E.H.: Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. - Oecologia 149: 221-232, 2006. Go to original source...
  2. Antunes, M.S., Ha, S.B., Tewari-Singh, N., Morey, K.J., Trofka, A.M., Kugrens, P., Deyholos, M., Medford, J.I.: A synthetic de-greening gene circuit provides a reporting system that is remotely detectable and has a re-set capacity. - Plant Biotechnol. J. 4: 605-622, 2006. Go to original source...
  3. Bauer, Z., Gómez-Gómez, L., Boller, T., Felix, G.: Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. - J. biol. Chem. 276: 45669-45676, 2001. Go to original source...
  4. Beck, M.I., Wyrsch, I., Strutt, J., Wimalasekera, A., Webb, A., Boller, T., Robatzek, S.: Expression patterns of flagellin sensing 2 map to bacterial entry sites in plant shoots and roots. - J. exp. Bot. 65: 6487-6498, 2014. Go to original source...
  5. Berger, S., Benediktyova, Z., Matous, K., Bonfig, K., Mueller, M.J., Nedbal, L., Roitsch, T.: Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. - J. exp. Bot. 58: 797-806, 2007a. Go to original source...
  6. Berger, S., Sinha, A.K., Roitsch, T.: Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. - J. exp. Bot. 58: 4019-4026, 2007b. Go to original source...
  7. Bilgin, D.D., Aldea, M., O'Neill, B.F., Benitez, M., Li, M., Clough, S.J., DeLucia, E.H.: Elevated ozone alters soybean-virus interaction. - Mol. Plant Microbe Interact. 21: 1297-1308, 2008. Go to original source...
  8. Fauser, F., Schiml, S., Puchta, H.: Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. - Plant J. 79: 348-359, 2014.‏ Go to original source...
  9. Gómez-Gómez, L., Bauer, Z., Boller, T.: Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. - Plant Cell 13: 1155-1163, 2001. Go to original source...
  10. Harrison, S.J., Mott, E.K., Parsley, K., Aspinall, S., Gray, J.C., Cottage, A.: A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. - Plant Methods 2: 19, 2006. Go to original source...
  11. Herms, D.A., Mattson, W.J.: The dilemma of plants: to grow or defend. - Quart. Rev. Biol. 67: 283-335, 1992. Go to original source...
  12. Hernandez-Garcia, C.M., Finer, J.J.: Identification and validation of promoters and cis-acting regulatory elements. - Plant Sci. 217: 109-119, 2014. Go to original source...
  13. Janssen, B., Gardner, R.: Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. - Plant mol Biol. 14: 61-72, 1989. Go to original source...
  14. Jefferson, R.A.: Assaying chimeric genes in plants: the GUS gene fusion system. - Plant mol. Biol. Rep. 5: 387-405, 1987. Go to original source...
  15. Jung, C.S., Griffiths, H.M., De Jong, D.M., Cheng, S., Bodis, M., De Jong, W.S.: The potato P locus codes for flavonoid 3',5'-hydroxylase. - Theor. appl. Genet. 110: 269-275, 2005. ‏ Go to original source...
  16. Justino, C.I., Duarte, A.C., Rocha-Santos, T.A.: Recent progress in biosensors for environmental monitoring: a review. - Sensors 17: 2918, 2017. Go to original source...
  17. Kosová, K., Vítámvás, P., Urban, M.O., Prá¹il, I.T., Renaut, J.: Plant abiotic stress proteomics: the major factors determining alterations in cellular proteome. - Front. Plant Sci. 9: 122, 2018. Go to original source...
  18. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., Ward, E.: Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. - Plant J. 16: 223-233, 1998. Go to original source...
  19. Liu, W., Mazarei, M., Rudis, M.R., Fethe, M.H., Stewart, C.N., Jr,: Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. - BMC Biotechnol. 11: 1, 2011. Go to original source...
  20. Liu, W., Rudis, M.R., Peng, Y., Mazarei, M., Millwood, R.J., Yang, J.P., Xu, W., Chesnut, J.D., Stewart Jr, C.N.: Synthetic TAL effectors for targeted enhancement of transgene expression in plants. - Plant Biotechnol. J. 12: 436-446, 2014. Go to original source...
  21. Liu, W.X., Zhang, F.C., Zhang, W.Z., Song, L.F., Wu, W.H., Chen, Y.F.: Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress. - Mol. Plant 6: 1487-1502, ‏2013. Go to original source...
  22. Long, F., Zhu, A., Shi, H.: Recent advances in optical biosensors for environmental monitoring and early warning. - Sensors 13: 13928-13948, 2013. Go to original source...
  23. Luo, J., Xia, W., Cao, P., Xiao, Z.A., Zhang, Y., Liu, M., Zhan, C., Wang, N.: Integrated transcriptome analysis reveals plant hormones jasmonic acid and salicylic acid coordinate growth and defense responses upon fungal infection in poplar. - Biomolecules 9: 12, 2019. Go to original source...
  24. Mazarei, M., Teplova, I., Hajimorad, M.R., Stewart, C.N., Jr.: Pathogen phytosensing: plants to report plant pathogens. - Sensors 8: 2628-2641, 2008. Go to original source...
  25. Miura, K., Furumoto, T.: Cold signaling and cold response in plants. - Int. J. mol. Sci. 14: 5312-5337, ‏2013. Go to original source...
  26. Mollaa, M.M.H., Nasiruddin, K.M., Al-Amin, M., Haque, M.S.: Agrobacterium-mediated transformation in potato. - Thai J. agr. Sci. 44: 93-102, 2011.
  27. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - Physiol. Plant. 15: 473-497, 1962. Go to original source...
  28. Nabity, P.D., Zavala, J.A., DeLucia, E.H.: Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. - Ann. Bot. 103: 655-663, 2009. Go to original source...
  29. Peng, H.C., Kaloshian, I.: The tomato leucine-rich repeat receptor-like kinases SlSERK3A and SlSERK3B have overlapping functions in bacterial and nematode innate immunity. - PLoS ONE 9: e93302, 2014. Go to original source...
  30. Raventos, D., Jensen, A.B., Rask, M.B., Casacuberta, J.M., Mundy, J., San Segundo, B.: A 20 bp cis-acting element is both necessary and sufficient to mediate elicitor response of a maize PRms gene. - Plant J. 7: 147-155, 1995. Go to original source...
  31. Robatzek, S., Bittel, P., Chinchilla, D., Köchner, P., Felix, G., Shiu, S.H., Boller, T.: Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. - Plant mol. Biol. 64: 539-547, 2007. Go to original source...
  32. Rushton, P.J., Reinstädler, A., Lipka, V., Lippok, B., Somssich, I.E.: Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen-and wound-induced signaling. - Plant Cell 14: 749-762, 2002. Go to original source...
  33. Seo, P.J., Lee, A.K., Xiang, F., Park, C.M.: Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. - Plant Cell Physiol. 49: 334-344, 2008. ‏ Go to original source...
  34. Shetty, R.P., Endy, D., Knight, T.F.: Engineering BioBrick vectors from BioBrick parts. - J. biol. Eng. 2: 5, 2008. Go to original source...
  35. Tian, D., Traw, M.B., Chen, J.Q., Kreitman, M., Bergelson, J.: Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. - Nature 423: 74-77, 2003. Go to original source...
  36. Waters, A.J., Makarevitch, I., Noshay, J., Burghardt, L.T., Hirsch, C.N., Hirsch, C.D., Springer, N.M.: Natural variation for gene expression responses to abiotic stress in maize. - Plant J. 89: 706-717, 2017. Go to original source...
  37. Wen, Z., Yao, L., Singer, S.D., Muhammad, H., Li, Z., Wang, X.: Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria. - Plant Physiol. Biochem. 112: 346-361, 2017. Go to original source...
  38. Wroblewski, T., Tomczak, A., Michelmore, R.: Optimization of Agrobacterium mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. - Plant Biotechnol. J. 3: 259-273, 2005. Go to original source...
  39. Xiang, T., Zong, N., Zou, Y., Wu, Y., Zhang, J., Xing, W., Li, Y., Tang, X., Zhu, L., Chai, J., Zhou, J.M.: Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. - Curr. Biol. 18: 74-80, 2008. Go to original source...
  40. Zangerl, A.R., Berenbaum, M.R.: Phenotype matching in wild parsnip and parsnip webworms causes and consequences. - Evolution 57: 806-815, 2003. Go to original source...
  41. Zangerl, A.R., Hamilton, J.G., Miller, T.J., Crofts, A.R., Oxborough, K., Berenbaum, M.R., DeLucia, E.H.: Impact of folivory on photosynthesis is greater than the sum of its holes. - Proc. nat. Acad. Sci. USA 99: 1088-1091, 2002. Go to original source...
  42. Zavala, J.A., Baldwin, I.T.: Fitness benefits of trypsin proteinase inhibitor expression in Nicotiana attenuata are greater than their costs when plants are attacked. - BMC Ecol. 4: 11, 2004. Go to original source...