biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 64:798-806, 2020 | DOI: 10.32615/bp.2020.154

Transcriptome-based screening and the optimal reference genes for real-time quantitative PCR in Rehmannia chingii and R. henryi

X. ZUO, F.-Q. WANG*, X.-R. LI, M.-M. LI
College of Agronomy, Henan Agricultural University, Zhengzhou 450002, P.R. China

Real time quantitative PCR (qPCR) is a powerful tool for studying the expression of specific genes. The accuracy and reliability of qPCR analysis data require the selection of reference genes with stable expression. However, the reference genes that can be used for qPCR of Rehmannia chingii and R. henryi have not yet been identified. In this study, based on the transcriptome data of R. chingii and R. henryi, we initially selected genes with relatively stable expression in different samples. We screened six candidate reference genes in R. chingii and R. henryi and calculated their expression abundance by real time qPCR. Their expression stability was evaluated by three algorithms geNorm, NormFinder, and BestKeeper. Although the results obtained by different algorithms were not completely consistent, R. chingii type 2A phosphatase activator TIP41 and R. chingii 18S ribosomal RNA had the highest expression stability in six different samples of R. chingii, and R. henryi 18S ribosomal RNA and R. henryi actin showed the most stable expression in different samples of R. henryi. In addition, based on transcriptome data, four genes were screened in R. chingii and R. henryi, and the expression stability of the selected reference genes was further verified. This study laid the foundation for further analysis and verification of the functions of important genes in R. chingii and R. henryi.

Keywords: BestKeeper, gene expression stability, geNorm, NormFinder.

Received: July 13, 2020; Revised: October 18, 2020; Accepted: October 19, 2020; Published online: December 11, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ZUO, X., WANG, F.-Q., LI, X.-R., & LI, M.-M. (2020). Transcriptome-based screening and the optimal reference genes for real-time quantitative PCR in Rehmannia chingii and R. henryi . Biologia plantarum64, Article 798-806. https://doi.org/10.32615/bp.2020.154
Download citation

Supplementary files

Download file6530_Zuo_Suppl.pdf

File size: 494.66 kB

References

  1. Andersen, C.L., Jensen, J.L., Ørntoft, T.F.: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. - Cancer Res. 64: 5245-5250, 2004. Go to original source...
  2. Bustin, S.A.: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. - J. mol. Endocrinol. 25: 169-193, 2000. Go to original source...
  3. Bustin, S.A.: Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. - J. mol. Endocrinol. 29: 23-39, 2002. Go to original source...
  4. Bustin, S.A., Benes, V., Nolan, T., Pfaffl, M.W.: Quantitative real-time RT-PCR - a perspective. - J. mol. Endocrinol. 34: 597-601, 2005. Go to original source...
  5. Expósito-Rodríguez, M., Borges, A.A., Borges-Pérez, A., Pérez J.A.: Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. - BMC Plant Biol. 8: 131, 2008. Go to original source...
  6. Guénin, S., Mauriat, M., Pelloux, J., Van Wuytswinkel, O., Bellini, C., Gutierrez, L.: Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. - J. exp. Bot. 60: 487-493, 2009. Go to original source...
  7. Gutierrez, L., Mauriat, M., Pelloux, J., Bellini, C., Van Wuytswinkel, O.: Towards a systematic validation of references in real-time RT-PCR. - Plant Cell 20: 1734-1735, 2008. Go to original source...
  8. Huggett, J., Dheda, K., Bustin, S., Zumal, A.: Real-time RT-PCR normalisation; strategies and considerations. - Genes Immun. 6: 279-284, 2005. Go to original source...
  9. Kozera, B., Rapacz, M.: Reference genes in real-time PCR. - J. appl. Genet. 54: 391-406, 2013. Go to original source...
  10. Liu, Y.F., Shi, G.R., Wang, X., Zhang, C.L., Wang, Y., Chen, R.Y., Yu, D.Q.: Bioactive iridoid glycosides from the whole plants of Rehmannia chingii. - J. Natur. Prod. 79: 428-433, 2016. Go to original source...
  11. Li, L., Wang, K.Y., Zhao, M.Z., Li, S.K., Jiang, Y., Zhu, L., Chen, J., Wang, Y.F., Sun, C.Y., Chen, P., Lei, J., Zhang, M.P., Wang, Y.: Selection and validation of reference genes desirable for gene expression analysis by qRT-PCR in MeJA-treated ginseng hairy roots. - PLoS ONE 14: e0226168, 2019. Go to original source...
  12. Manoli, A., Sturaro, A., Trevisan, S., Quaggiotti, S., Nonis, A.: Evaluation of candidate reference genes for qPCR in maize. - J. Plant Physiol. 169: 807-815, 2012. Go to original source...
  13. Nicot, N., Hausman, J.F., Hoffmann, L., Evers, D.: Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. - J. exp. Bot. 56: 2907-2914, 2005. Go to original source...
  14. Paolacci, A.R., Tanzarella, O.A., Porceddu, E., Ciaffi, M.: Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. - BMC mol. Biol. 10: 11, 2009. Go to original source...
  15. Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P.: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. - Biotechnol. Lett. 26: 509-515, 2004. Go to original source...
  16. Schmidt, G.W., Delaney, S.K.: Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. - Mol. Genet. Genomics 283: 233-241, 2010. Go to original source...
  17. Suzuki, T., Higgins, P.J., Crawford, D.R.: Control selection for RNA quantitation. - Biotechniques 29: 332- 337, 2000. Go to original source...
  18. Tong, Z.G., Gao, Z.H., Wang, F., Zhou, J., Zhang, Z.: Selection of reliable reference genes for gene expression studies in peach using real-time PCR. - BMC mol. Biol. 10: 71, 2009. Go to original source...
  19. Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., Grisar, T., Igout, A., Heinen, E.: Housekeeping genes as internal standards: use and limits. - J. Biotechnol. 75: 291-295, 1999. Go to original source...
  20. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F.: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. - Genome Biol. 3: research0034.1, 2002. Go to original source...
  21. Weigand, A.M., Dinapoli, A., Klussmann-Kolb, A.: 18S rRNA variability map for Gastropoda. - J. Mollus. Stud. 78: 151-156, 2012. Go to original source...
  22. Yeap, W.C., Loo, J.M., Wong, Y.C., Kulaveerasingam, H.: Evaluation of suitable reference genes for qRT-PCR gene expression normalization in reproductive, vegetative tissues and during fruit development in oil palm. - Plant Cell Tissue Organ Cult. 116: 55-66, 2014. Go to original source...
  23. Zheng, C.J., Wu, Y., Zhu, J.Y., Zhao, X.X., Qin, L.P.: Chemical constituents of the aerial parts of Rehmannia chingii. - Chem. natur. Comp. 50: 560-561, 2014. Go to original source...
  24. Zhou, J., Shi, G.R., Liu, Y.F., Chen, R.Y., Yu, D.Q.: Five new iridoids from the whole plants of Rehmannia henryi. - J. asian nat. Products Res. 21: 727-734, 2019a. Go to original source...
  25. Zhou, J., Shi, G.R., Liu, Y.F., Chen, R.Y., Yu, D.Q.: Nine new compounds from the whole plants of Rehmannia henryi. - J. asian natur. Products Res. 21: 399-408, 2019b. Go to original source...