biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 65:80-87, 2021 | DOI: 10.32615/bp.2021.006

Genome‑wide identification and analysis of the trihelix transcription factors in sunflower

J. SONG1, W.Y. SHEN1, 2, S. SHAHEEN1, Y.Y. LI1, Z.R. LIU1, Z. WANG1, H.B. PANG1, *, Z. AHMED3, 4, 5, *
1 College of Life Sciences, Shenyang Normal University, Shenyang 110034, P.R. China
2 Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, P.R. China
3 Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang, 830011, P.R. China
4 Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang, 848300, P.R. China
5 Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, P.R. China

The trihelix genes encode plant-specific transcription factors, which play a vital role in plant morphological and developmental processes. However, information about the presence of trihelix genes in sunflower (Helianthus annuus L.) is scarce. Sunflower belongs to composite family and possesses strong drought and salt-alkali tolerance. In this study based on H. annuus genome data, we have identified and analyzed the trihelix genes with a complete description of their physical and chemical properties, phylogenetic relationships, motif composition, chromosome distribution, exon-intron structure, cis-acting elements, and chromosome collinearity. In H. annuus, 31 full-length trihelix genes were identified and categorized into six subgroups (SIP, GT1, SH4, Gδ, GT-γ, and GT2). Multiple Em for motif elicitation (MEME), used for conservative motif analysis, identified 10 distinct motifs unevenly distributed on 31 trihelix genes. In addition to that, chromosome localization analysis showed the number and distribution of these trihelix genes on 17 chromosomes of H. annuus. Transcriptional structure analysis revealed the structure of introns and exons of different gene members. Furthermore, cis-element analysis identified 19 different types of cis-elements mainly related to abiotic stress, hormones, and growth and development of plant. Results of this study manifested novel insights into phylogenetic relationships and possible functions of H. annuus trihelix genes. Moreover, these findings can assist in future studies regarding specific physiological effects of H. annuus trihelix transcription factors.

Keywords: cis-acting elements, chromosome distribution, Helianthus annuus, MEME, motif composition, phylogenetic relationships.

Received: December 8, 2020; Revised: January 25, 2021; Accepted: February 2, 2021; Published online: April 30, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
SONG, J., SHEN, W.Y., SHAHEEN, S., LI, Y.Y., LIU, Z.R., WANG, Z., PANG, H.B., & AHMED, Z. (2021). Genome‑wide identification and analysis of the trihelix transcription factors in sunflower. Biologia plantarum65, Article 80-87. https://doi.org/10.32615/bp.2021.006
Download citation

Supplementary files

Download file6650_Song_Suppl.pdf

File size: 988.08 kB

References

  1. Barr, M.S., Willmann, M.R., Jenik, P.D.: Is there a role for trihelix transcription factors in embryo maturation? - Plant Signal. Behav. 7: 5, 2012. Go to original source...
  2. Breuer, C., Kawamura, A., Ichikawa, T., Tominaga-Wada, R., Wada, T., Kondou, Y., Muto, S., Matsui, M., Sugimoto, K.: The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome - Plant Cell 21: 2307-2322, 2009. Go to original source...
  3. Cannon, S., Mitra, A., Baumgarten, A., Young, N.D., May, G.: The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. - BMC Plant Biol. 4: 10, 2004. Go to original source...
  4. Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R.: TBtools: an integrative toolkit developed for interactive analyses of big biological data. - Mol. Plants 13: 1194-1202, 2020. Go to original source...
  5. Fang, Y., Xie, K., Hou, X., Hu, H.H., Xiong, L.Z.: Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. - Mol. Genet. Genom. 283: 157-169, 2009. Go to original source...
  6. Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. - Plant Cell 17: 3470-3488, 2005. Go to original source...
  7. Gao, M.J., Lydiate, D.J., Li, X., Lui, H., Gjetvaj, B., Hegedus, D.D., Rozwadowski, K.: Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. - Plant Cell 21: 54-71, 2009. Go to original source...
  8. Gao, M.J., Li, X., Lui, H., Gropp, G.M., Lydiate, D.D., Wei, S., Hegedus, D.D.: ASIL1 is required for proper timing of seed filling in Arabidopsis. - Plant Signal. Behav. 6: 1886-1888, 2014. Go to original source...
  9. Geraldo, N., Baurle, I., Kidou, S., Hu, X.Y., Dean, C.: FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex. - Plant Physiol. 150: 1611-1618, 2009. Go to original source...
  10. Ji, J.J., Zhou, Y.J., Wu, H.H., Yang, L.M.: Genome-wide analysis and functional prediction of the trihelix transcription factor family in rice. - Hereditas 37: 1228-1241, 2015.
  11. Kane, N.C., Rieseberg, L.H.: Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. - Genetics 175: 1823-1834, 2007. Go to original source...
  12. Kaplan-Levy, R.N., Brewer, P.B., Quon, T., Smyth, D.R.: The trihelix family of transcription factors - light, stress and development. - Trends Plant Sci. 17: 163-171, 2012. Go to original source...
  13. Konishi, S., Izawa, T., Lin, S.Y., Ebana, K., Fukuta, Y., Sasaki, T., Yano, M.: An SNP caused loss of seed shattering during rice domestication. - Science 312: 1392-1396, 2006. Go to original source...
  14. Kuromori, T., Wada, T., Kamiya, A., Yuguchi, M., Yokouchi, T., Imura, Y., Takabe, H., Sakurai, T., Akiyama, K., Hirayama, T., Okada, K., Shinozaki, K.: A trial of phenome analysis using 4000Ds-insertional mutants in gene-coding regions of Arabidopsis. - Plant J. 47: 640-651, 2006. Go to original source...
  15. Lee, S.C., Luan, S.: ABA signal transduction at the crossroad of biotic and abiotic stress responses. - Plant Cell Environ. 35: 53-60, 2012. Go to original source...
  16. Li, J.M., Zhang, M.H., Sun, J., Mao, X.R., Wang, J., Wang, J.G., Liu, H.L., Zheng, H.L., Zhen, Z., Zhao, H.W., Zou, D.T.: Genome-wide characterization and identification of trihelix transcription factor and expression profiling in response to abiotic stresses in rice (Oryza sativa L.). - Int. J. mol. Sci. 20: 251, 2019. Go to original source...
  17. Liu, W., Zhang, Y., Li, W., Lin, Y., Wang, C., Xu, R., Zhang, L.: Genome-wide characterization and expression analysis of soybean trihelix gene family - Peer J. 8: e8753, 2020. Go to original source...
  18. Lozano, R., Hamblin, M.T., Prochnik, S., Jannink, J.L.: Identification and distribution of the NBS-LRR gene family in the cassava genome. - BMC Genomics 16: 1-14, 2014. Go to original source...
  19. Mao, H.D., Yu, L.J., Li, Z.J., Liu, H., Han, R.: Molecular evolution and gene expression differences within the HD-Zip transcription factor family of Zea mays L. - Genetica 144: 243-257, 2016. Go to original source...
  20. Nagano, Y.: Several features of the GT-factor trihelix domain resemble those of the Myb DNA-binding domain. - Plant Physiol. 124: 491-494, 2000. Go to original source...
  21. Neupane, S., Andersen, E.J., Neupane, A., Nepal, M.P.: Genome-wide identification of NBS-encoding resistance genes in sunflower (Helianthus annuus L.). - Genes 9: 384, 2018. Go to original source...
  22. Park, H.C., Kim, M.L., Kang, Y.H., Jeon, J.M., Yoo, J.H., Kim, M.C., Park, C.Y., Jeong, J.C., Moon, B.C., Lee, J. H.: Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-Like transcription factor. - Plant Physiol. 135: 2150-2161, 2004. Go to original source...
  23. Qin, Y., Ma, X., Yu, G., Wang, Q., Wang, L., Kong, L., Kim, W., Wang, H.W.: Evolutionary history of trihelix family and their functional diversification. - DNA Res. 21: 499-510, 2014. Go to original source...
  24. Wang, X.H., Li, Q.T., Chen, H.W., Zhang, W.K., Ma, B., Chen, S.Y., Zhang J.S: Trihelix transcription factor GT-4 mediates salt tolerance via interaction with TEM2 in Arabidopsis. - BMC Plant Biol. 14: 339, 2016. Go to original source...
  25. Wasilewska, A., Vlad, F., Sirichandra, C., Redko, Y., Jammes, F., Valon, C., Frey, N.F.D., Leung, J.: An update on abscisic acid signaling in plants and more. - Mol. Plants 1: 198-217, 2008. Go to original source...
  26. White, A.J., Dunn, M.A., Brown, K., Hughes, M.A.: Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. - J. exp. Bot. 45: 1885-1892, 1994. Go to original source...
  27. Xie, T., Chen, C.J., Li, C.H., Liu, J.R., Liu, C.Y., He, Y.H.: Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress. - BMC Genomics 19: 490, 2018. Go to original source...
  28. Xie, Z.M., Zou, H.F., Lei, G., Wei, W., Zhou, Q.Y., Niu, C.F., Liao, Y., Tian, A.G., Ma, B., Zhang, W.K.: Soybean trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. - PLoS ONE 4: e6898, 2009. Go to original source...
  29. Xu, H.Y., He, L., Guo, Y., Shi, X.X., Zang, D.D., Li, H.Y., Zhang, W.H., Wang, Y.C.: Arabidopsis thaliana trihelix transcription factor AST1 mediates salt and osmotic stress tolerance by binding to a novel AGAG-box and some GT motifs - Plant Cell Physiol. 59: 946-965, 2018. Go to original source...
  30. Yang, Z.F., Zhou, Y., Wang, X.F., Gu, S.L., Yu, J.M., Liang, G.H., Yan, C.J., Xu, C.W.: Genomewide comparative phylogenetic and molecular evolutionary analysis of tubby-like protein family in Arabidopsis, rice, and poplar. - Genomics 92: 246-253, 2008. Go to original source...
  31. Yin, Z.H., Li, Y., Zhang, C.Q., Yang, C.C., Wu, C.L., Liu, X.P., Wang, M.M.: Cloning and promoter activity analyses of the promoter of 2'-deoxymugineic acid (DMA) secretion channel gene YS3 in maize. - Hereditas 38: 560-568, 2016.
  32. Yu, C.Y., Cai, X.F., Ye, Z.B., Li, H.X.: Genome-wide identification and expression profiling analysis of trihelix gene family in tomato. - Biochem. biophys. Res. Commun. 468: 653-659, 2015. Go to original source...
  33. Yu, C.Y., Song, L.L., Song, J.W., Ouyang, B., Guo, L.J., Shang, L.L., Wang, T.T., Li, H.X., Zhang, J.H., Ye, Z.B.: ShCIGT, a trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato. - Plant Sci. 270:140-149, 2018. Go to original source...
  34. Zhang, L.X., Gao, M., Hu, J.J., Zhang, X.F., Wang, K., Ashraf, M.H.: Modulation role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress. - Int. J. mol. Sci. 13: 3189-3202, 2012. Go to original source...