biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 65:88-99, 2021 | DOI: 10.32615/bp.2020.086

Influence of water shortage on apple seedling growth under different radiation composition

F.A. HAMANN1, *, A. FIEBIG1, G. NOGA1
1 University of Bonn, Institute of Crop Science and Resource Conservation, Horticultural Sciences, D-53121-Bonn, Germany

Abiotic stresses strongly impair plant development and might impose detrimental effects particularly on seedlings. Irradiance and water deficit are relevant factors, which affect performance of young plants under controlled conditions. In our study, we investigated the influence of water shortage combined with different radiation sources - light emitting diodes (LED) and compact fluorescence lamps (CFL) - on physiological and biochemical parameters of young apple plants. Stress responses were assessed by fluorescence-based indices, while relative water, chlorophyll (Chl), and proline content served as reference parameters. The watering regime had a higher impact on biochemical indicators than the radiation sources. Lower Chl content was determined in plants grown under LED both in control and in water deficit plants. Nitrogen balance index and nitrogen balance index with red radiation excitation showed similar patterns regarding leaf Chl results in relation to the radiation source, being higher under CFL. In contrast, the flavonol index was higher in plants cultivated under LED. Stomatal conductance and maximal photochemical efficiency emphasised a radiation quality effect with higher values for CFL. In conclusion, fluorescence indices related to nitrogen status and flavonol content are promising parameters to sense physiological impairments under the given conditions. However, discrepancies compared to previous studies might be related to the different plant species, the nature of dehydration, and the measuring conditions.

Keywords: compact fluorescence lamps, light emitting diodes, portable fluorescence sensors, water deficit.

Received: July 21, 2019; Revised: May 31, 2020; Accepted: June 4, 2020; Published online: May 12, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
HAMANN, F.A., FIEBIG, A., & NOGA, G. (2021). Influence of water shortage on apple seedling growth under different radiation composition. Biologia plantarum65, Article 88-99. https://doi.org/10.32615/bp.2020.086
Download citation

Supplementary files

Download file6288_Hamann_Suppl.pdf

File size: 87.54 kB

References

  1. Abrahám, E., Hourton-Cabassa, C., Erdei, L., Szabados, L.: Methods for determination of proline in plants. - In: Sunkar, R. (ed.): Plant Stress Tolerance. Methods in Molecular Biology (Methods and Protocols). Vol. 639: Pp. 317-331. Humana Press, Totowa 2010. Go to original source...
  2. Astolfi, S., Marianello, C., Grego, S., Bellarosa, R.: Preliminary investigation of LED lighting as growth light for seedlings from different tree species in growth chambers. - Not. Bot. Hort. Agrobot. Cluj 40: 31-38, 2012. Go to original source...
  3. Bantis, F., Ouzounis, T., Radoglou, K.: Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. - Scientia Hort. 198: 277-283, 2016. Go to original source...
  4. Barrs, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. - Aust. J. biol. Sci. 15: 413-428, 1962. Go to original source...
  5. Abdallah, F.B, Philippe, W., Goffart, J.P.: [Use of chlorophyll fluorescence for the evaluation of crop nitrogen status. A review.] - Biotechnol. Agron. Soc. Environ. 20: 83-93, 2016. [In French] Go to original source...
  6. Bolat, I., Dikilitas, M., Ercisli, S., Ikinci, A., Tonkaz, T.: The effect of water stress on some morphological , physiological, and biochemical characteristics and bud success on apple and quince rootstocks. - Sci. World J. 2014: 769732, 2014. Go to original source...
  7. Bürling, K., Cerovic, Z.G., Cornic, G., Ducruet, J.M., Noga, G., Hunsche, M.: Fluorescence-based sensing of drought-induced stress in the vegetative phase of four contrasting wheat genotypes. - Environ. exp. Bot. 89: 51-59, 2013. Go to original source...
  8. Bürling, K., Hunsche, M., Noga. G.: Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. - J. Plant Physiol. 168: 1641-1648, 2011. Go to original source...
  9. Buschmann, C., Lichtenthaler, H.K.: Contribution of chlorophyll fluorescence to the reflectance of leaves in stressed plants as determined with the VIRAF-spectrometer. - Z. Naturforsch. C. 54: 849-855, 1999. Go to original source...
  10. Cerovic, Z.G., Masdoumier, G., Ghozlen, N.B., Latouche, G.: A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. - Physiol. Plant. 146: 251-260, 2012. Go to original source...
  11. Chen, C., Xiao, Y., Li, X., Ni, M.: Light-regulated stomatal aperture in Arabidopsis. - Mol. Plants 5: 566-572, 2012. Go to original source...
  12. Ghozlen, N.B, Cerovic, Z.G., Germain, C., Toutain, S., Latouche, G.: Non-destructive optical monitoring of grape maturation by proximal sensing. - Sensors (Basel) 10: 10040-10068, 2010. Go to original source...
  13. González, L., González-Vilar, M.: Determination of relative water content. - In: Manuel, J., Reigosa, R. (ed.): Handbook of Plant Ecophysiology Techniques. Pp. 207-212. Springer, Dorderecht 2001. Go to original source...
  14. Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis. - Annu. Rev. Plant Physiol. 33: 317-345, 1982. Go to original source...
  15. Gitelson, A., Buschmann, C., Lichtenthaler, H.: The chlorophyll fluorescence ratio F735/ F700 as an accurate measure of the chlorophyll content in plants. - Remote Sens. Environ. 69: 296-302, 1999. Go to original source...
  16. Hamann, F.A., Czaja, S., Hunsche, M., Noga, G., Fiebig, A.: Monitoring physiological and biochemical responses of two apple cultivars to water supply regimes with non destructive fluorescence sensors. - Scientia Hort. 242: 51-61, 2018. Go to original source...
  17. Hayat, S., Hayat, Q., Alyemeni, M.S., Wani, A.S., Pichtel, J., Ahmad, A.: Role of proline under changing environments. - Plant Signal. Behav. 7: 1456-1466, 2012. Go to original source...
  18. Hoffmann, A., Noga, G., Hunsche, M.: Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit. - J. Plant Res. 2: 295-306, 2015. Go to original source...
  19. Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram R., Panneerselvam, R.: Drought stress in plants: a review on morphological characteristics and pigments composition. - Int. J. Agr. Biol. 11: 100-105, 2009.
  20. Kalaji, M.H., Guo, P: Chlorophyll fluorescence: a useful tool in barley plant breeding programs. - In: Sánchez, A., Gutierrez, J.S. (ed.): Photochemistry Research Progress. Pp 439-463. Nova Science Publishers, New York 2008.
  21. Kautz, B., Noga, G., Hunsche, M.: Sensing drought- and salinity-imposed stresses on tomato leaves by means of fluorescence techniques. - Plant Growth Regul. 73: 279-288, 2014. Go to original source...
  22. Kautz, B., Noga, G., Hunsche, M.: PEG and drought cause dinstict changes in biochemical, physiological and morphological parameters of apple seedlings. - Acta Physiol. Plant. 37: 162, 2015. Go to original source...
  23. Kim, H.H., Wheeler, R., Sager, J.C., Yorio, N.C., Goins, G.D.: Light-emitting diodes as an illumination source for plants: a review of research at Kennedy Space Center. - Habitation 10: 71-78; 2005. Go to original source...
  24. Kopsell, D.A., Kopsell, D.E., Lefsrud, M.G., Curran-Celentano, J., Dukach, L.E.: Variation in lutein, β-carotene, and chlorophyll concentrations among Brassica oleracea cultigens and seasons. - HortScience 39: 361-364, 2004. Go to original source...
  25. Kopsell, D.A., Sams, C.E.: Increases in shoot tissue pigments, glucosinolates and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. - J. amer. Soc. hort. Sci. 138: 31-37, 2013. Go to original source...
  26. Kovács, H., Aleksza, D., Baba, A.I., Hajdu, A., Király, A.M., Zsigmond, L., Tóth, S.Z., Kozma-Bognár, L., Szabados, L.: Light control of salt-induced proline accumulation is mediated by elongated hypocotyl 5 in Arabidopsis. - Front. Plant Sci. 10: 1584, 2019. Go to original source...
  27. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics. - Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991. Go to original source...
  28. Leufen, G., Noga, G., Hunsche, M.: Fluorescence indices for the proximal sensing of powdery mildew, nitrogen supply and water deficit in sugar beet leaves. - Agriculture 4: 58-78, 2014. Go to original source...
  29. Lichtenthaler, H.K., Babani, F., Navrátil, M., Buschmann, C.: Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees. - Photosynth. Res. 117: 355-366, 2013. Go to original source...
  30. Loreto, F., Tsonev, T., Centritto, M.: The impact of blue light on leaf mesophyll conductance. - J. exp. Bot. 60: 2283-2290, 2009. Go to original source...
  31. Massa, G.D., Kim, H.H., Wheeler, R.M., Mitchell, C.A.: Plant productivity in response to LED lighting. - HortScience 43: 1951-1956, 2008. Go to original source...
  32. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide. - J. exp. Bot. 51: 659-668, 2000. Go to original source...
  33. Mullan, D., Pietragalla, J.: Leaf relative water content. - In: Pask, A., Pietragalla, J., Reynolds, M. (ed.): Physiological Breeding II: A Field Guide to Wheat Phenotyping. Pp. 25-27. International Maize and Wheat Improvement Center, Mexico City 2012.
  34. Nouri, M.Z., Moumeni, A., Komatsu, S.: Abiotic stresses: insight into gene regulation and protein expression in photosynthetic pathways of plants. - Int. J. mol. Sci. 16: 20392-20416, 2015. Go to original source...
  35. Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.S.P.: Response of plants to water stress. - Front. Plant Sci. 5: 1-8, 2014. Go to original source...
  36. Roháček, K., Soukupová, J., Barták, M.: Chlorophyll fluorescence: a wonderful tool to study plant physiology and plant stress. - In: Schoefs, B. (ed.): Plant Cell Compartments - Selected Topics. Pp. 41-104. Research Signpost, Kerala 2008.
  37. Runkle, E.: Light Wavebands and Their Effects on Plants - Michigan State University, East Lansing 2015.
  38. Shimazaki, K., Doi, M., Assmann, S.M., Kinoshita, T.: Light regulation of stomatal movement. - Annu Rev Plant Biol. 58: 219-247, 2007. Go to original source...
  39. Strobl, A., Türk, R.: Investigations on the chlorophyll content of some subalpine lichens. - Phyton 30: 247-264, 1990.
  40. Terashima, I., Fujita, T., Inoue, T., Chow, W.S., Oguchi, R.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. - Plant Cell Physiol. 50: 684-697 2009. Go to original source...
  41. Tremblay, N., Wang, Z., Cerovic, Z.G: Sensing crop nitrogen status with fluorescence indicators. a review. - Agron. Sustain. Dev. 32: 451-464, 2012. Go to original source...
  42. Wang, Z., Tian, J., Yu, B., Yang, L., Sun, Y.: LED light spectrum affects the photosynthetic performance of Houttuynia cordata seedlings. - Amer. J. Optics Photonics 3: 38-42, 2015. Go to original source...
  43. Xu, Y., Wang, G., Cao, F., Zhu, C., Wang, G., El-Kassaby, Y. A.: Light intensity affects the growth and flavonol biosynthesis of ginkgo (Ginkgo biloba L.). - New Forest. 45: 765-776, 2014. Go to original source...
  44. Zeiger, E., Field, C.: Photocontrol of the functional coupling between photosynthesis and stomatal conductance in the intact leaf. - Plant Physiol. 70: 370-375, 1982. Go to original source...
  45. Zhang, Y., Tremblay, N., Zhu, J.: A first comparison of Multiplex® for the assessment of corn nitrogen status. - J. Food Agr. Environ. 10: 1008-1016, 2012.
  46. Zhao, D., Reddy, K.R., Kakani, V.G., Reddy, V.R.: Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. - Eur. J. Agron. 22: 391-403, 2005. Go to original source...