biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 65:145-156, 2021 | DOI: 10.32615/bp.2021.016

Physiological and transcriptomic analysis of Pinus massoniana seedling response to osmotic stress

H. XU1, X. GAO1, C. YU2, *
1 College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, P.R. China
2 College of Forestry, Guizhou University, Huaxi district, Guiyang 550025, P.R. China

Masson pine (Pinus massoniana Lamb.) is an important tree species of high economic value in southern China, but osmotic stress threatens its growth and development. In this study, physiological measurements and RNA-Seq analysis were used to clarify the physiological and molecular responses of P. massoniana under osmotic stress. Osmotic treatment caused cell membrane damage and reactive oxygen species (ROS) accumulation in the tree seedlings, but it also increased their antioxidant enzyme (superoxide dismutase, peroxidase, and catalase) activities and osmotic substances (soluble sugars, proline, and trehalose) content so as to adjust to osmotic stress conditions. A total of 1 789 differentially expressed genes (DEGs) were identified by transcriptome sequencing, of which 962 were up-regulated and 827 genes down-regulated. A series of stress-induced genes associated with signal transduction, ROS-scavenging, osmotic regulation, late embryogenesis abundant (LEA) protein, pentatricopeptide repeat-containing protein, and transcription factors' regulation were distinguishable. This detailed investigation of the stress-responsive genes and pathways provides new insight into molecular mechanism of abiotic stress response in P. massoniana. Further, this study's data can contribute to genetic engineering or molecular breeding efforts to enhance osmotic resistance in P. massoniana stands.

Keywords: osmotic stress, physiological analysis, Pinus massoniana, plant molecular response, ROS-scavenging, transcription factors.

Received: September 14, 2020; Revised: January 21, 2021; Accepted: March 4, 2021; Published online: May 31, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
XU, H., GAO, X., & YU, C. (2021). Physiological and transcriptomic analysis of Pinus massoniana seedling response to osmotic stress. Biologia plantarum65, Article 145-156. https://doi.org/10.32615/bp.2021.016
Download citation

Supplementary files

Download file6607_Xu_Suppl.pdf

File size: 1.05 MB

References

  1. Aebi, H.: Catalase in vitro. - Method Enzymol. 105: 121-126, 1984. Go to original source...
  2. Allen, M.D., Yamasaki, K., Ohme-Takagi, M., Suzuki, M.: A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box bingding domain in complex with DNA. - EMBO J. 17: 5484-5496, 1998. Go to original source...
  3. Almansouri, M., Kinet, J.M., Lutts, S.: Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). - Plant Soil 231: 243-254, 2001. Go to original source...
  4. Amara, I., Capellades, M., Ludevid, M.D., Pagès, M., Goday, A.: Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene. - J. Plant Physiol. 170: 864-873, 2013. Go to original source...
  5. Ayadi, M., Brini, F., Masmoudi, K.: Overexpression of a wheat aquaporin gene, TdPIP2;1, enhances salt and drought tolerance in transgenic durum wheat cv. Maali. -Int. J. mol. Sci. 20: 2389, 2019. Go to original source...
  6. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  7. Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhris, M., Ben Abdallah, F.: Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. - Environ. exp. Bot. 67: 345-352, 2009. Go to original source...
  8. Campo, S., Baldrich, P., Messeguer, J., Lalanne, E., Coca, M., San Segundo, B.: Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. - Plant Physiol. 165: 688-704, 2014. Go to original source...
  9. Cheong, Y.H., Sung, S.J., Kim, B.-G., Pandey, G.K., Cho, J.-S., Kim, K.-N., Luan, S.: Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. - Mol. Cells 29: 159-165, 2010. Go to original source...
  10. Das, K., Roychoudhury, A.: Reactive oxygens pecies (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. - Front. environ. Sci. 2: 1-12, 2014. Go to original source...
  11. Davies, P.J.: Plant Hormones. - Springer, Amsterdam 1995. Go to original source...
  12. Dodd, A.N., Kudla, J., Sanders, D.: The language of calcium signaling. - Annu. Rev. Plant Biol. 61: 593- 620, 2010. Go to original source...
  13. Du, M., Ding, G., Cai, Q.: The transcriptomic responses of Pinus massoniana to drought stress. - Forests 9: 326, 2018. Go to original source...
  14. Elstner, E.F., Heupel, A.: Inhibition of nitrite formation from hydroxylam moniumchloride: a simple assay for superoxide dismutase. - Anal. Biochem. 70: 616-620, 1976. Go to original source...
  15. Fan, F., Cui, B., Zhang, T., Qiao, G., Ding, G., Wen, X.: The temporal transcriptomic response of Pinus massoniana seedlings to phosphorus deficiency. - PLoS ONE 8: e105068, 2014. Go to original source...
  16. Fan, L., Zheng, S., Wang, X.: Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. - Plant Cell 9: 2183-2196, 1997. Go to original source...
  17. Fang, Q., Wang, Q., Mao, H., Xu, J., Wang, Y., Hu, H., Shuai, H., Tu, J., Cheng, C., Tian, G., Wang, X., Liu, X., Zhang, C., Luo, K.: AtDIV2, an R-R-type MYB transcription factor of Arabidopsis, negatively regulates salt stress by modulating ABA signaling. - Plant Cell Rep. 37: 1499-1511, 2018. Go to original source...
  18. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Firedman, N., Regev, A.: Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. - Nature Biotech. 29: 644, 2011. Go to original source...
  19. Han, Y., Zhang, J., Chen, X., Gao, Z., Xuan, W., Xu, S., Ding, X., Shen, W.: Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. - New Phytol. 177: 155-166, 2008. Go to original source...
  20. He, Y., Liu, A., Tigabu, M.,Wu, P., Ma, X., Wang, C., Oden, P.C.: Physiological responses of needles of Pinus massoniana elite families to phosphorus stress in acid soil. - J. Forest. Res. 24: 325-332, 2013. Go to original source...
  21. Hirt, H., Shinozaki, K.: Plant Responses to Abiotic Stress. - Springer, Berlin 2010.
  22. Jiang, S.C., Mei, C., Liang, S., Yu, Y.T., Lu, K., Wu, Z., Wang, X.F., Zhang, D.P.: Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. - Plant mol. Biol. 88: 369-385, 2015. Go to original source...
  23. Kim, M., Ahn, J.W., Jin, U.H., Choi, D., Paek, K.H., Pai, H.S.: Activation of the programmed cell death pathway by inhibition of proteasome function in plants. - J. biol. Chem. 278: 19406-19415, 2003. Go to original source...
  24. Kiranmai, K., Rao, G.L., Pandurangaiah, M., Naresshkumar, A., Reddy, V.A., Lokesh, U., Venkatesh, B., Johnson, A.M.A., Sudhakar, C.: A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. - Front. Plant Sci. 16: 346, 2018. Go to original source...
  25. Klay, I., Gouia, S., Liu, M., Mila, I., Khoudi, H., Bernadac, A., Bouzayen, M., Pirrello, J.: Ethylene response factors (ERF) are differentially regulated by different abiotic stress types in tomato plants. - Plant Sci. 274: 137-145, 2018. Go to original source...
  26. Landjeva, S., Neumann, K., Lohwasser, U., Bomer, M.: Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. - Biol. Plant. 52: 259-266, 2008. Go to original source...
  27. Laluk, K., Qamar, S.A., Mengiste, T.: The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. - Plant Physiol. 156: 2053-2068, 2011. Go to original source...
  28. Li, C., Chang, P.P., Ghebremariam, K.M., Qin, L., Liang, Y.: Overexpression of tomato SpMPK3 gene in Arabidopsis enhances the osmotic tolerance. - Biochem. biophys. Res. Commun. 443: 357-362, 2014. Go to original source...
  29. Li, J., Guo, X., Zhang, M., Wang, X., Zhao, Y., Yin, Z., Zhang, Z., Wang, Y., Xiong, H., Zhang, H.: OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis. - Plant Sci. 270: 131-139, 2018. Go to original source...
  30. Li, W., Jaroszewski, L., Godzik, A.: Clustering of highly homologous sequences to reduce the size of large protein database. - Bioinformatics 17: 282-283, 2001. Go to original source...
  31. Li, Y., Zhang, L., Wang, X., Zhang, W., Hao, L., Chu, X., Guo, X.: Cotton GhMPK6a negatively regulates osmotic tolerance and bacterial infection in transgenic Nicotiana benthamiana, and plays a pivotal role in development. - FEBS J. 280: 5128-5144, 2013. Go to original source...
  32. Liu, C., Fukumoto, T., Matsumoto, T., Gena, P., Frascaria, D., Kaneko, T., Katsuhara, M., Kitagawa, Y.: Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination. - Plant Physiol. 63: 151-158, 2013. Go to original source...
  33. Liu, J., Chu, J., Ma, C., Jiang, Y., Ma, Y., Xiong, J., Cheng, Z.: Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis. - Plant Cell Rep. 38: 587-596, 2019. Go to original source...
  34. Liu, Q.H., Zhou, Z.C., Wei, Y.C., Shen, D.Y., Feng, Z.P., Hong, S.P.: Genome-wide identification of differentially expressed genes associated with the high yielding of oleoresin in secondary xylem of masson pine (Pinus massoniana Lamb) by transcriptomic analysis. - Plos ONE 10: e0132624, 2015. Go to original source...
  35. Liu, W., Tai, H., Li, S., Gao, W., Zhao, M., Xie, C., Li, M.X.: bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. - New Phytolol. 201: 1192-1204, 2014. Go to original source...
  36. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. - Methods 25: 402-408, 2001. Go to original source...
  37. Lurin, C., Andres, C., Aubourg, S. Bellaoui, M., Bitton, F., Bruyere, C., Caboche, M., Debast, C., Gualberto, J., Hoffmann, B., Lecharny, A., Le Ret, M., Martin-Magniette, M., Mireau, H., Peeters, N., Renou, J.P, Szurek, B., Taconnat, L., Small, I.: Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. - Plant Cell 16: 2089-2103, 2004. Go to original source...
  38. Lv, H.X., Huang, C., Guo, G.Q., Yang, Z.N.: Roles of the nuclear-encoded chloroplast SMR domain-containing PPR protein SVR7 in photosynthesis and oxidative stress tolerance in Arabidopsis. - J. Plant Biol. 57: 291-301, 2014. Go to original source...
  39. Meierhoff, K., Felder, S., Nakamura, T., Bechtold, N., Schuster, G.: HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbTpsbH-petB-petD RNAs. - Plant Cell 15: 1480-1495, 2003. Go to original source...
  40. Mijiti, M., Zhang, Y., Zhang, C., Wang, Y.: Physiological and molecular responses of Betula platyphylla Suk to salt stress. - Trees 31: 1653-1665, 2017. Go to original source...
  41. Mirzaee, M., Moieni, A., Ghanati, F.: Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars. - J. agr. Sci. Technol. 15: 593-602, 2013.
  42. Mittova, V., Tal, M., Volokita, M., Guy, M.: Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. - Physiol. Plant 115: 393-400, 2002. Go to original source...
  43. Moshelion, M., Halperin, O., Wallach, R., Oren, R., Way, D.A.: Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. - Plant Cell Environ. 38: 1785-1793, 2015. Go to original source...
  44. Mundada, P.S., Nikam, T.D., Anil-Kumar, S., Umdale, S.D., Ahire, M.L.: Morpho-physiological and biochemical responses of finger millet (Eleusine coracana (L.) Gaertn.) genotypes to PEG-induced osmotic stress. - Biocatal. Agr. Biotech. 23: 101488, 2020. Go to original source...
  45. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. - Plant Cell Physiol. 22: 867-880, 1981.
  46. Pan, X., Hu, H.: Transcriptome analysis of low phosphate stress response in the roots of masson pine (Pinus massoniana) seedlings. - Acta Physiol. Plant. 42: 176, 2020. Go to original source...
  47. Porra, R.J., Thompson, W.A., Kriedemann, P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. - Biochim. biophys. Acta 975: 384-394, 1989. Go to original source...
  48. Qin, L., Wang, L., Guo, Y., Li, Y., Ümüt, H., Wang, Y.: An ERF transcription factor from Tamarix hispida, ThCRF1, can adjust osmotic potential and reactive oxygen species scavenging capability to improve salt tolerance. - Plant Sci. 265: 154-166, 2017. Go to original source...
  49. Qiu, N., Liu, Q., Li, J., Zhang, Y., Wang, F., Gao, J.: Physiological and transcriptomic responses of Chinese cabbage (Brassica rapa L. ssp. pekinensis) to salt stress. - Int. J. mol. Sci. 18: 1953, 2017. Go to original source...
  50. Quan, W., Ding, G.: Root tip structure and volatile organic compound responses to drought stress in Masson pine (Pinus massoniana Lamb.). - Acta Physiol. Plant. 39: 258, 2017. Go to original source...
  51. Rabbani, M.A., Maruyama, K., Abe, H., Khan, M.A., Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. - Plant Physiol. 133: 1755-1767, 2003. Go to original source...
  52. Rios-Gonzalez, K., Erdei, L., Lips, S.H. The activity of antioxidant enzymes in maize and sunflower and sunflower seedlings as affected by salinity and different nitrogen sources. - Plant Sci. 162: 923-930, 2002. Go to original source...
  53. Roberts, A., Trapnell, C., Donaghey, J. Rinn, J.L., Pachter, L.: Improving RNA-Seq expression estimates by correcting for fragment bias. - Genome Bol. 12: 22, 2011. Go to original source...
  54. Rowe, J.H., Topping, J.F., Liu, J., Lindsey, K.: Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. - New Phytol. 211: 225-239, 2016. Go to original source...
  55. Sah, S.K., Reddy, K.R., Li, J.: Abscisic acid and abiotic stress tolerance in crop plants. - Front Plant Sci. 7: 571, 2016. Go to original source...
  56. Serrano, R., Montesinos, C.: Molecular bases of desiccation tolerance in plant cells and potential applications in food dehydration. - Food Sci. Technol. Int. 9: 157-161, 2003. Go to original source...
  57. Singh, R., Jwa, N.S.: The rice MAPKK-MAPK interactome: the biological significance of MAPK components in hormone signal transduction. - Plant Cell Rep. 32: 923-931, 2013. Go to original source...
  58. Swarup, R., Parry, G., Graham. N., Allen, T., Bennett, M.: Auxin cross-talk: integration of signaling pathways to control plant development. - Plant mol. Biol. 49: 411-426, 2002. Go to original source...
  59. Takasaki, H., Maruyama, K., Kidokoro, S. Ito, Y., Fujita, Y., Shinozaki, K., Yamaguchi-Shinozaki, K., Nakashima, K.: The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. - Mol. Genet. Genomics 284: 173-183, 2010. Go to original source...
  60. Tana, J., Tana, Z., Wub, F., Sheng, P., Cheng, Y.: A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. - Mol. Plant 7: 1329-1349, 2014. Go to original source...
  61. Thalmann, M., Pazmino, D., Seung, D., Horrer, D., Nigro, A., Meier, T., Ling, K.K., Pfeifhofer, H.W., Zeeman, S.C., Santelia, D.: Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. - Plant Cell 28: 1860-1878, 2016. Go to original source...
  62. Velikova, V., Yordanov, I., Edreva, A.: Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. - Plant Sci. 151: 59-66, 2000. Go to original source...
  63. Wan, D., Li, R., Zou, B., Zhang, X., Cong, J., Wang, R., Xia, J., Li, G.: Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. - Plant Cell Rep. 31: 1269-1281, 2012. Go to original source...
  64. Wang, J.F., Zhang, L., Cao, Y.Y., Qi, C., Li, S., Liu, L., Wang, G., Mao, A., Ren, S., Guo, Z.-D.: CsATAF1 positively regulatates drought stress tolerance by an ABA-dependent pathway and by promoting ROS scavenging in cucumber. - Plant Cell Physiol. 59: 930-945, 2018. Go to original source...
  65. Wang, H., Zhang, M., Guo, R., Shi, D., Liu, B., Lin, X., Yang, C.: Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). - BMC Plant Biol. 12: 194, 2012. Go to original source...
  66. Wani, S.H., Tripathi, P., Zaid, A., Challa, G.S., Kumar, A., Kumar, V., Upadhyay, J., Joshi, R., Bhatt, M.: Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). - Plant mol. Biol. 97: 469-487, 2018. Go to original source...
  67. Williams, P.M., Barkan, A.: A chloroplast-localized PPR protein required for plastid ribosome accumulation. - Plant J. 36: 675-686, 2003. Go to original source...
  68. Xu, G.Y., Rocha, P.S., Wang, M.L., Xu, M.L., Cui, Y.C., Li, L.Y., Zhu, Y.X., Xia, X.: A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. - Planta 234: 47-59, 2011. Go to original source...
  69. Yang, J., Zhao, S., Zhao, B., Li, C.: Overexpression of TaLEA3 induces rapid stom atal closure under drought stress in Phellodendron amurense Rupr. - Plant Sci. 277: 100-109, 2018. Go to original source...
  70. Yasar, F., Uzal, O., Tufenkci, S., Yildiz, K., Pasa, O.: Ion accumulation in different organs of green bean genotypes grown under salt stress. - Plant Soil Environ. 52: 476-480, 2006. Go to original source...
  71. Yasunari, F., Kazuo, N., Takuya, Y., Takeshi, K., Satoshi, K., Norihito, K., Taishi, U., Miki, F., Kyonoshin, M., Kanako, I.: Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. - Plant Cell Physiol. 50: 2123-2132, 2009. Go to original source...
  72. Ye, G., Ma, Y., Feng, Z., Zhang, X.: Transcriptomic analysis of drought stress responses of sea buckthorn (Hippophae rhamnoides subsp. sinensis) by RNA-Seq. - PLoS ONE 13(8):e0202213, 2018. Go to original source...
  73. Yoshida, T., Mogami, J., Yamaguchi-Shinozaki, K.: ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. - Curr. Opin. Plant Biol. 21: 133-139, 2014. Go to original source...
  74. Zang, D.D., Li, H.Y., Xu, H.Y., Zhang, W.H., Zhang, Y.M., Shi, X.X., Wang, Y.C.: An Arabidopsis zinc finger protein increases abiotic stress tolerance by regulating sodium and potassium homeostasis, reactive oxygen species scavenging and osmotic potential. - Front. Plant Sci. 24: 1272, 2016. Go to original source...
  75. Zhang, L.L., Zhu, X.M., Kuang, Y.W.: Responses of Pinus massoniana seedlings to lead stress. - Biol. Plant. 61: 785-790, 2017. Go to original source...
  76. Zhang, W., Yang, G., Mu, D., Li, H. Zang, D., Xu, H., Zou, X., Wang, Y.: An ethylene-responsive factor BpERF11 negatively modulates salt and osmotic tolerance in Betula platyphylla. - Sci Rep. 6: 23085, 2016. Go to original source...
  77. Zhang, X., Wang, L., Meng, H., Wen, H., Fan, Y., Zhao, J.: Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. - Plant mol. Biol. 75: 365-378, 2011. Go to original source...
  78. Zhang, Z., Huang, R.F.: Analysis of malondialdehyde, chlorophyll, proline, soluble sugar, and glutathione content in Arabidopsis seedling. - Bio-protocol 3: 1-8, 2013. Go to original source...
  79. Zhu, J.K.: Salt and drought stress signal transduction in plants. - Annu. Rev. Plant Biol. 53: 247-273, 2002. Go to original source...