biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 65:283-296, 2021 | DOI: 10.32615/bp.2021.035

Identification of three gene families coordinating the conversion between fructose-6-phosphate and fructose-1,6-bisphosphate in wheat

C.M. YU1, *, Y.C. KE1, K.P. ZHANG2, M. YAN1, H.R. JIN1, Y.H. CHEN1, J. ZHANG1
1 School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu Province, P.R. China
2 State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, 100101, P.R. China

Saccharides are a direct energy source for most organisms and the primary components in grains of common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD). However, genes involved in the metabolism of primary saccharides such as glucose and fructose have not been fully characterized in wheat, which limits our understanding of how these genes influence wheat growth. In this study, genes coding ATP-dependent phosphofructokinase (PFK), fructose-1,6-bisphosphatase (FBP), and pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase (PFP), which participate in the conversion between fructose 6-phosphate (F-6-P) and fructose 1,6-bisphosphate (F-1,6-P2), were identified at the genome-wide level. A total of 24, 13, and 12 genes were found encoding TaPFK, TaFBP, and TaPFP, respectively. All predicted peptides of these genes exhibited conserved substrate-binding domain, suggesting they are active enzymes in vivo. Transcriptome data ranked the gene levels as follows: TacyFBP-1 > TacpFBP-1 > TaPFPα-2 ≈ TaPFPβ >> TaPFK-1 ≈ TaPFK-5 >> all remaining genes at different developmental stages of wheat. In the three tapfp-a, b, and d knockout lines, there was a decrease in the plant height, anther length, and thousand-grain mass, while the percentage of abnormal pollen increased compared to that of wild type cv. Huapei3 (HP3). During germination, tapfpβ-a exhibited a lower germination rate, shorter coleoptile and primary root length, and higher fructose content than HP3, tapfpβ-b, and tapfpβ-d lines. Expressions were ranked as follows: TaPFK-5 ≈ TaPFPα-2 >> TaPFPα-1 ≈ TaPFPβ > TacyFBP-1 ≈ TaPFK-7, 9 in HP3. All these genes were downregulated during the 24 - 96 h germinating process in three mutant lines. Collectively, main TaPFK, TaFBP, and TaPFP members cooperated during wheat growth, while TaPFPβ knockout decreased wheat vitality. Results from this study can aid more systematic studies of the physiological and molecular functions of TaPFK, TaFBP, and TaPFP.

Keywords: ATP-dependent phosphofructokinase, fructose-1,6-bisphosphatase, germination, pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase, transcriptome, Triticum aestivum.

Received: February 6, 2021; Revised: June 2, 2021; Accepted: June 9, 2021; Published online: October 27, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
YU, C.M., KE, Y.C., ZHANG, K.P., YAN, M., JIN, H.R., CHEN, Y.H., & ZHANG, J. (2021). Identification of three gene families coordinating the conversion between fructose-6-phosphate and fructose-1,6-bisphosphate in wheat. Biologia plantarum65, Article 283-296. https://doi.org/10.32615/bp.2021.035
Download citation

Supplementary files

Download file6684_Yu_Suppl.pdf

File size: 2.03 MB

References

  1. Ali-Benali, M.A., Alary, R., Joudrier, P., Gautier, M.F.: Comparative expression of five Lea genes during wheat seed development and in response to abiotic stresses by real-time quantitative RT-PCR. - Biochim. biophys. Acta 1730: 56-65, 2005. Go to original source...
  2. Ap Rees, T., Green, J.H., Wilson P.M.: Pyrophosphate: fructose 6-phosphate 1-phosphotransferase and glycolysis in non-photosynthetic tissues of higher plants. - Biochem. J. 227: 299-304, 1985. Go to original source...
  3. Basson, C.E., Groenewald, J.H., Kossmann, J., Cronje, C., Bauer R.: Upregulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in strawberry. - Transgenic Res. 20: 925-931, 2011. Go to original source...
  4. Borrill, P., Ramirez-Gonzalez, R., Uauy, C.: expVIP: a customizable RNA-seq data analysis and visualization platform. - Plant Physiol. 170: 2172-2186, 2016. Go to original source...
  5. Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G.L., D'Amore, R., Allen, A.M., McKenzie, N., Kramer, M., Kerhornou, A., Bolser, D., Kay, S., Waite, D., Trick, M., Bancroft, I., Gu. Y., Huo, N., Luo, M.C., Sehgal, S., Gill, B., Kianian, S., Anderson, O., Kersey, P., Dvorak, J., McCombie, W.R., Hall, A., Mayer, K.F., Edwards, K.J., Bevan, M.W., Hall N.: Analysis of the bread wheat genome using whole-genome shotgun sequencing. - Nature 491: 705-710, 2012. Go to original source...
  6. Cao, J., Dai, X., Wang Q. (ed.): Botanical Experiment. - China Sci. Publishing & Midia Ltd., Beijing, 2012. [In Chinese]
  7. Chen, C., He, B., Liu, X., Ma, X., Liu, Y., Yao, H.Y., Zhang, P., Yin, J., Wei, X., Koh, H.J., Yang, C., Xue, H.W., Fang, Z., Qiao, Y.: Pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP1) regulates starch biosynthesis and seed development via heterotetramer formation in rice (Oryza sativa L.). - Plant Biotechnol. J. 18: 83-95, 2020a. Go to original source...
  8. Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R.: TBtools: An integrative toolkit developed for interactive analyses of big biological data. - Mol. Plant 13: 1194-1202, 2020b. Go to original source...
  9. Chueca, A., Sahrawy, M., Pagano, E.A., Lopez Gorge, J.: Chloroplast fructose-1,6-bisphosphatase: structure and function. - Photosynth. Res. 74: 235-249, 2002. Go to original source...
  10. Costa dos Santos, A., Seixas da-Silva, W., De Meis, L., Galina, A.: Proton transport in maize tonoplasts supported by fructose-1,6-bisphosphate cleavage. Pyrophosphate-dependent phosphofructokinase as a pyrophosphate-regenerating system. - Plant Physiol. 133: 885-892, 2003.
  11. Duan, E., Wang, Y., Liu, L., Zhu, J., Zhong, M., Zhang, H., Li, S., Ding, B., Zhang, X., Guo, X., Jiang, L., Wan, J. Pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) regulates carbon metabolism during grain filling in rice. - Plant Cell Rep. 35: 1321-1331, 2016. Go to original source...
  12. Fernie, A.R., Roscher, A., Ratcliffe, R.G., Kruger, N.J.: Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. - Planta 212: 250-263, 2001. Go to original source...
  13. Fernie, A.R., Roscher, A., Ratcliffe, R.G., Kruger, N.J.: Activation of pyrophosphate: fructose-6-phosphate 1-phosphotransferase by fructose 2,6-bisphosphate stimulates conversion of hexose phosphates to triose phosphates but does not influence accumulation of carbohydrates in phosphate-deficient tobacco cells. - Physiol. Plant. 114: 172-181, 2002. Go to original source...
  14. Fernie, A.R., Carrari, F., Sweetlove, L.J.: Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. - Curr. Opin. Plant Biol. 7: 254-261, 2004. Go to original source...
  15. Gutle, D.D., Roret, T., Muller, S.J., Couturier, J., Lemaire, S.D., Hecker, A., Dhalleine, T., Buchanan, B.B., Reski, R., Einsle, O., Jacquot, J.P.: Chloroplast FBPase and SBPase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories. - Proc. nat. Acad. Sci. USA 113: 6779-6784, 2016. Go to original source...
  16. International Wheat Genome Sequencing C.: A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. - Science 345: 1251788, 2014.
  17. International Wheat Genome Sequencing C.: Shifting the limits in wheat research and breeding using a fully annotated reference genome. - Science 361: eaar7191, 2018.
  18. Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., Appels, R., Pfeifer, M., Tao, Y., Zhang, X., Jing, R., Zhang, C., Ma, Y., Gao, L., Gao, C., Spannagl, M., Mayer, K.F., Li, D., Pan, S., Zheng, F., Hu, Q., Xia, X., Li, J., Liang, Q., Chen, J., Wicker, T., Gou, C., Kuang, H., He, G., Luo, Y., Keller, B., Xia, Q., Lu, P., Wang, J., Zou, H., Zhang, R., Xu, J., Gao, J., Middleton, C., Quan, Z., Liu, G., Wang, J., Yang, H., Liu, X., He, Z., Mao, L., Wang, J.: Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. - Nature 496: 91-95, 2013. Go to original source...
  19. Jiang, Y.H., Wang, D.Y., Wen, J.F.: The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle. - BMC Evol. Biol. 12: 208, 2012. Go to original source...
  20. Knowles, V.L., Greyson, M.F., Dennis, D.T.: Characterization of ATP-dependent fructose 6-phosphate 1-phosphotransferase isozymes from leaf and endosperm tissues of Ricinus communis. - Plant Physiol. 92: 155-159, 1990. Go to original source...
  21. Kumar, S., Stecher, G., Tamura, K.: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. - Mol. Biol. Evol. 33: 1870-1874, 2016. Go to original source...
  22. Lee, S.K., Jeon, J.S., Bornke, F., Voll, L., Cho, J.I., Goh, C.H., Jeong, S.W., Park, Y.I., Kim, S.J., Choi, S.B., Miyao, A., Hirochika, H., An, G., Cho, M.H., Bhoo, S.H., Sonnewald, U., Hahn, T.R.: Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa). - Plant Cell Environ. 31: 1851-1863, 2008. Go to original source...
  23. Léran, S., Varala, K.K., Boyer, J.C., Chiurazzi, M., Crawford, N., Daniel-Vedele, F., David, L., Dickstein, R., Fernandez, E., Forde, B., Gassmann, W., Geiger, D., Gojon, A., Gong, J.M., Halkier, B.A., Harris, J.M., Hedrich, R., Limami, A.M., Rentsch, D., Seo, M., Tsay, Y.F., Zhang, M., Coruzzi, G., Lacombe, B.: A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. - Trends Plant Sci. 19: 5-9, 2014. Go to original source...
  24. Lim, H., Cho, M.H., Bhoo, S.H., Hahn, T.R.: Pyrophosphate: fructose-6-phosphate 1-phosphotransferase is involved in the tolerance of Arabidopsis seedlings to salt and osmotic stresses. - In Vitro Cell. Dev. Plant 50: 84-91, 2013. Go to original source...
  25. Lim, H., Cho, M.H., Jeon, J.S., Bhoo, S.H., Kwon, Y.K., Hahn, T.R.: Altered expression of pyrophosphate: fructose-6-phosphate 1-phosphotransferase affects the growth of transgenic Arabidopsis plants. - Mol. Cells 27: 641-649, 2009. Go to original source...
  26. Ling, H.Q., Zhao, S., Liu, D., Wang, J., Sun, H., Zhang, C., Fan, H., Li, D., Dong, L., Tao, Y., Gao, C., Wu, H., Li, Y., Cui, Y., Guo, X., Zheng, S., Wang, B., Yu, K., Liang, Q., Yang, W., Lou, X., Chen, J., Feng, M., Jian, J., Zhang, X., Luo, G., Jiang, Y., Liu, J., Wang, Z., Sha, Y., Zhang, B., Wu, H., Tang, D., Shen, Q., Xue, P., Zou, S., Wang, X., Liu, X., Wang, F., Yang, Y., An, X., Dong, Z., Zhang, K., Zhang, X., Luo, M.C., Dvorak, J., Tong, Y., Wang, J., Yang, H., Li, Z., Wang, D., Zhang, A., Wang, J.: Draft genome of the wheat A-genome progenitor Triticum urartu. - Nature 496: 87-90, 2013. Go to original source...
  27. Lü, H., Li, J., Huang, Y., Zhang, M., Zhang, S., Wu, J.: Genome-wide identification, expression and functional analysis of the phosphofructokinase gene family in Chinese white pear (Pyrus bretschneideri). - Gene 702: 133-142, 2019. Go to original source...
  28. Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M., Jakobsen, K.S., Wulff, B.B., Steuernagel, B., Mayer, K.F., Olsen, O.A.: Ancient hybridizations among the ancestral genomes of bread wheat. - Science 345: 1250092, 2014. Go to original source...
  29. Martin, W., Mustafa, A.Z., Henze, K., Schnarrenberger, C.: Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: origins via duplication rather than prokaryote-eukaryote divergence. - Plant mol. Biol. 32: 485-491, 1996. Go to original source...
  30. Merril, C.R.: Silver staining of proteins and DNA. - Nature 343: 779-780, 1990. Go to original source...
  31. Mirzaghaderi, G., Mason, A.S.: Revisiting pivotal-differential genome evolution in wheat. - Trends Plant Sci. 22: 674-684, 2017. Go to original source...
  32. Montavon, P., Kruger, N.J.: Substrate specificity of pyrophosphate:fructose 6-phosphate 1-phosphotransferase from potato tuber. - Plant Physiol. 99: 1487-1492, 1992. Go to original source...
  33. Muchut, R.J., Piattoni, C.V., Margarit, E., Tripodi, K.E.J., Podesta, F.E., Iglesias, A.A.: Heterologous expression and kinetic characterization of the alpha, beta and alpha beta blend of the PPi-dependent phosphofructokinase from Citrus sinensis. - Plant Sci. 280: 348-354, 2019. Go to original source...
  34. Mustroph, A., Sonnewald, U., Biemelt, S.: Characterisation of the ATP-dependent phosphofructokinase gene family from Arabidopsis thaliana. - FEBS Lett. 581: 2401-2410, 2007. Go to original source...
  35. Mustroph, A., Stock, J., Hess, N., Aldous, S., Dreilich, A., Grimm, B.: Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress. - Front. Plant Sci. 4: 125, 2013. Go to original source...
  36. Nielsen, T.H., Stitt, S.M.: Tobacco transformants with strongly decreased expression of pyrophosphate:fructose-6-phosphate expression in the base of their young growing leaves contain much higher levels of fructose-2,6-bisphosphate but no major changes in fluxes. - Planta 214: 106-116, 2001. Go to original source...
  37. Nielsen, T.H., Rung, J.H., Villadsen, D.: Fructose-2,6-bisphosphate: a traffic signal in plant metabolism. - Trends Plant Sci. 9: 556-563, 2004. Go to original source...
  38. Noggle, G.R., Zill, L.P.: The quantitative analysis of sugars in plant extracts by ion-exchange chromatography. - Arch. Biochem. Biophys. 41: 21-28, 1952. Go to original source...
  39. Pfister, B., Zeeman, S.C.: Formation of starch in plant cells. - Cell Mol. Life Sci. 73: 2781-2807, 2016. Go to original source...
  40. Plaxton, W.C., Podestá, F.E.: The functional organization and control of plant respiration. - Crit. Rev. Plant Sci. 25: 159-198, 2007. Go to original source...
  41. Rojas-Gonzalez, J.A., Soto-Suarez, M., Garcia-Diaz, A., Romero-Puertas, M.C., Sandalio, L.M., Merida, A., Thormahlen, I., Geigenberger, P., Serrato, A.J., Sahrawy, M.: Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana. - J. exp. Bot. 66: 2673-2689, 2015. Go to original source...
  42. Ronimus, R.S., Morgan, H.W.: The biochemical properties and phylogenies of phosphofructokinases from extremophiles. - Extremophiles 5: 357-373, 2001. Go to original source...
  43. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. - Mol. Biol. Evol. 4: 406-425, 1987.
  44. Salse, J., Bolot, S., Throude, M., Jouffe, V., Piegu, B., Quraishi, U.M., Calcagno, T., Cooke, R., Delseny, M., Feuillet, C.: Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. - Plant Cell 20: 11-24, 2008. Go to original source...
  45. Senapati, N., Semenov, M.A.: Large genetic yield potential and genetic yield gap estimated for wheat in Europe. - Global Food Secur. 24: 100340, 2020. Go to original source...
  46. Serrato, A.J., Yubero-Serrano, E.M., Sandalio, L.M., Munoz-Blanco, J., Chueca, A., Caballero, J.L., Sahrawy, M.: cpFBPaseII, a novel redox-independent chloroplastic isoform of fructose-1,6-bisphosphatase. - Plant Cell Environ. 32: 811-827, 2009. Go to original source...
  47. Serrato, A.J., Romero-Puertas, M.C., Lázaro-Payo, A., Sahrawy, M.: Regulation by S-nitrosylation of the Calvin-Benson cycle fructose-1,6-bisphosphatase in Pisum sativum. - Redox Biol. 14: 409-416, 2018. Go to original source...
  48. Shew, A.M., Tack, J.B., Nalley, L.L., Chaminuka, P.: Yield reduction under climate warming varies among wheat cultivars in South Africa. - Nat. Commun. 11: 4408, 2020. Go to original source...
  49. Soto-Suarez, M., Serrato, A.J., Rojas-Gonzalez, J.A., Bautista, R., Sahrawy, M.: Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation. - BMC Plant Biol. 16: 258, 2016. Go to original source...
  50. Theodorou, M.E., Kruger, N.J.: Physiological relevance of fructose 2,6-bisphosphate in the regulation of spinach leaf pyrophosphate:fructose 6-phosphate 1-phosphotransferase. - Planta 213: 147-157, 2001. Go to original source...
  51. Theodorou, M.E., Plaxton, W.C.: Purification and characterization of pyrophosphate-dependent phosphofructokinase from phosphate-starved Brassica nigra suspension cells. - Plant Physiol. 112: 343-351, 1996. Go to original source...
  52. Tripodi, K., Podesta, F.E.: Purification and structural and kinetic characterization of the pyrophosphate: fructose-6-phosphate 1-phosphotransferase from the Crassulacean acid metabolism plant, pineapple. - Plant Physiol. 113: 779-786, 1997. Go to original source...
  53. Turner, W.L., Plaxton, W.C.: Purification and characterization of pyrophosphate- and ATP-dependent phosphofructokinases from banana fruit. - Planta 217: 113-121, 2003. Go to original source...
  54. Van der Merwe, M.J., Groenewald, J.H., Stitt, M., Kossmann, J., Botha, F.C.: Downregulation of pyrophosphate: D-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels. - Planta 231: 595-608, 2010. Go to original source...
  55. Wang, P., Moore, B.M., Panchy, N.L., Meng, F., Lehti-Shiu, M.D., Shiu S.H.: Factors influencing gene family size variation among related species in a plant family, Solanaceae. - Genome Biol. Evol. 10: 2596-2613, 2018. Go to original source...
  56. Winkler, C., Delvos, B., Martin, W., Henze, K.: Purification, microsequencing and cloning of spinach ATP-dependent phosphofructokinase link sequence and function for the plant enzyme. - FEBS J. 274: 429-438, 2007. Go to original source...
  57. Zhu, L., Zhang, J., Chen, Y., Pan, H., Ming, R.: Identification and genes expression analysis of ATP-dependent phosphofructokinase family members among three Saccharum species. - Funct. Plant Biol. 40: 369, 2013. Go to original source...