biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 65:323-332, 2021 | DOI: 10.32615/bp.2021.044

Potassium silicate combined with glycine betaine improved salt tolerance in Dalbergia odorifera

L.-J. ZHANG, E.H.M. CISSE, Y.-J. PU, L.-F. MIAO, L.-S. XIANG, W. XU*, F. YANG*
School of Ecological and Environmental Sciences, Hainan University; Center for Eco-Environmental Restoration Engineering of Hainan Province; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, Hainan, 570228, P.R. China

Salinity has a huge negative impact on plant growth and development by increasing sodium ions accumulation and potassium ions loss that deeply disturbs the plant cell homeostasis and can lead to plant cell death. The imbalance between Na+ and K+ could be solved by applying potassium silicate (K2SiO3). The glycine betaine (GB) is well-known to play a crucial role against oxidative stress in plants by improving the antioxidant machinery. Thus, this research aimed to apply K2SiO3 (1 mM) and GB (10 mM) alone or in combination against 200 mM NaCl-induced damages in Dalbergia odorifera. The results showed a significant amelioration of negative effects of salt stress on the phenotypic traits, chlorophyll content, net photosynthetic rate, stomatal conductance, transpiration rate, and water use efficiency by applied substances. The contents of saccharides and proline were down-regulated by K2SiO3, GB, and K2SiO3-GB, whereas the proteins content was increased by these treatments. The contents of lipid peroxidation, superoxide anion, hydrogen peroxide were reduced by exogenous substances under stress. The activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the accumulation of antioxidants (glutathione and ascorbate) were enhanced by exogenous substances. The K2SiO3-GB combination mostly showed better effects on antioxidant machinery compared to a single treatment.

Keywords: antioxidants, chlorophyll, Dalbergia odorifera, glycine betaine, oxidative stress, photosynthesis, potassium silicate, redox homeostasis, salt tolerance.

Received: January 29, 2021; Revised: July 5, 2021; Accepted: July 30, 2021; Published online: November 25, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ZHANG, L.-J., CISSE, E.H.M., PU, Y.-J., MIAO, L.-F., XIANG, L.-S., XU, W., & YANG, F. (2021). Potassium silicate combined with glycine betaine improved salt tolerance in Dalbergia odorifera . Biologia plantarum65, Article 323-332. https://doi.org/10.32615/bp.2021.044
Download citation

Supplementary files

Download file6680_Zhang_Suppl.pdf

File size: 353.01 kB

References

  1. Abbas, T., Sattar, A., Ijaz, M., Aatif, M., Khalid, S., Sher, A.: Exogenous silicon application alleviates salt stress in okra. - Hort. Environ. Biotechnol. 58: 342-249, 2017. Go to original source...
  2. Ahmad, P., Ahanger, M.A., Alam, P., Alyemeni, M.N., Wijaya, L., Ali, S., Ashraf, M.: Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. - J. Plant Growth Regul. 38: 70-89, 2019. Go to original source...
  3. Ali, S., Abbas, Z., Seleiman, M.F., Rizwan, M., Yavas, İ., Alhammad, B.A., Shami, A., Hasanuzzaman, M., Kalderis, D.: Glycine betaine accumulation, significance and interests for heavy metal tolerance in plants. - Plants 9: 896, 2020. doi: 10.3390/plants9070896 Go to original source...
  4. Annunziata, M.G., Ciarmiello, L.F., Woodrow, P., Dell'Aversana, E., Carillo, P.: Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. - Front. Plant Sci. 10: 230, 2019. Go to original source...
  5. Assaha, D.V.M., Ueda, A., Saneoka, H., Al-Yahyai, R., Yaish, M.W.: The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. - Front. Physiol. 8: 509, 2017. Go to original source...
  6. Banu, M.N.A., Hoque, M.A., Watanabe-Sugimoto, M., Islam, M.M., Uraji, M., Matsuoka, K., Nakamura, Y., Murata, Y.: Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells. - Biosci. Biotechnol. Biochem. 74: 2043-2049, 2010. Go to original source...
  7. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  8. Bosnic, P., Bosnic, D., Jasnic, J., Nikolic, M.: Silicon mediates sodium transport and partitioning in maize under moderate salt stress. - Environ. exp. Bot. 155: 681-687, 2018. Go to original source...
  9. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  10. Cao, X., Jiang, F., Wang, X., Zang, Y., Wu, Z.: Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage. - Euphytica 205: 569-584, 2015. Go to original source...
  11. Chakraborty, K., Bhaduri, D., Meena, H.N., Kalariya, K.: External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. - Plant Physiol. Biochem. 103: 143-153, 2016. Go to original source...
  12. Chung, Y.S., Kim, K.S., Hamayun, M., Kim, Y.: Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. - Front. Plant Sci. 10: 1725, 2020. Go to original source...
  13. Demidchik, V.: Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. - Environ. exp. Bot. 109: 212-228, 2015. Go to original source...
  14. Epstein, E.: Silicon. - Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 641-664, 1999. Go to original source...
  15. Farooq, M., Basra, S.M.A., Wahid, A., Cheema, Z.A., Cheema, M.A., Khaliq, A.: Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). - J. Agron. Crop Sci. 194: 325-333, 2008. doi:10.1111/j.1439-037X.2008.00323.x Go to original source...
  16. Farooq, S., Ahmad, S., Hussain, S., Hussain, M.: Nutrient homeostasis and salt stress tolerance. - In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, N., Hawrylak-Nowak, B. (eds.): Plant Nutrients and Abiotic Stress Tolerance. Pp. 391-413. Springer, Singapore 2018. Go to original source...
  17. Hasanuzzaman, M., Alam, M.M., Rahman, A., Hasanuzzaman, M., Nahar, K., Fujita, M.: Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. - Biomed. Res. Int. 2014: 757219, 2014. Go to original source...
  18. Hasanuzzaman, M., Bhuyan, M., Nahar, K., Hossain, M., Mahmud, J., Hossen, M., Masud, A., Moumita, Fujita, M.: Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. - Agronomy 8: 31, 2018a. Go to original source...
  19. Hasanuzzaman, M., Nahar, K., Rohman, M.M., Anee, T.I., Huang, Y., Fujita, M.: Exogenous silicon protects Brassica napus plants from salinity-induced oxidative stress through the modulation of AsA-GSH pathway, thiol-dependent antioxidant enzymes and glyoxalase systems. - Gesunde Pflanzen 70: 185-194, 2018b. Go to original source...
  20. Jagendorf, A.T., Takabe, T.: Inducers of glycinebetaine synthesis in barley. - Plant Physiol. 127: 1827-1835, 2001. Go to original source...
  21. Khan, A., Khan, A.L., Muneer, S., Kim, Y.H., Al-Rawahi, A., Al-Harrasi, A.: Silicon and salinity: crosstalk in crop-mediated stress tolerance mechanisms. - Front. Plant Sci. 10: 1429, 2019. Go to original source...
  22. Lichtenthaler, H.K., Wellburn, A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. - Biochem. Soc. Trans. 11: 591-592, 1983. Go to original source...
  23. Liu, F.M., Zhang, N.N., Liu, X.J., Yang, Z.J., Jia, H.Y., Xu, D.P.: Genetic diversity and population structure analysis of Dalbergia odorifera germplasm and development of a core collection using microsatellite markers. - Genes 10: 281, 2019. Go to original source...
  24. Malekzadeh, P.: Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). - Physiol. mol. Biol. Plants 21: 225-232, 2015. Go to original source...
  25. McNeil, S.D., Nuccio, M.L., Hanson, A.D.: Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. - Plant Physiol. 120: 945-949, 1999. Go to original source...
  26. Oukarroum, A., El Madidi, S., Strasser, R.J.: Exogenous glycine betaine and proline play a protective role in heat-stressed barley leaves (Hordeum vulgare L.): a chlorophyll a fluorescence study. - Plant Biosyst. Plant Biol. 146: 1037-1043, 2012. Go to original source...
  27. Pailles, Y., Awlia, M., Julkowska, M., Passone, L., Zemmouri, K., Negrão, S., Schmöckel, S.M., Tester, M.: Diverse traits contribute to salinity tolerance of wild tomato seedlings from the Galapagos Islands. - Plant Physiol. 182: 534-546, 2020. Go to original source...
  28. Papageorgiou, G.C., Murata, N.: The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. - Photosynth. Res. 44: 243-252, 1995. Go to original source...
  29. Park, E.J., Jeknic, Z., Chen, T.H.H.: Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. - Plant Cell Physiol. 47: 706-714, 2006. Go to original source...
  30. Qi, Z., Spalding, E.P.: Protection of plasma membrane K + transport by the salt overly sensitive1 Na +-H + antiporter during salinity stress. - Plant Physiol. 136: 2548-2555, 2004. Go to original source...
  31. Shabala, S., Cuin, T.A.: Potassium transport and plant salt tolerance. - Physiol. Plant. 133: 651-669, 2008. Go to original source...
  32. Shabala, S., Pottosin, I.: Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. - Physiol. Plant. 151: 257-279, 2014. Go to original source...
  33. Temme, A.A., Kerr, K.L., Masalia, R.R., Burke, J.M., Donovan, L.A.: Key traits and genes associate with salinity tolerance independent from vigor in cultivated sunflower. - Plant Physiol. 184: 865-880, 2020. Go to original source...
  34. Timasheff, S.N.: A physicochemical basis for the selection of osmolytes by nature. In: Somero, G.N., Osmond, C.B., Bolis, C.L. (eds.): Water and Life. Pp. 70-84. Springer, Berlin - Heidelberg 1992. Go to original source...
  35. Wang, M., Zheng, Q., Shen, Q., Guo, S.: The critical role of potassium in plant stress response. - Int. J. mol. Sci. 14: 7370-7390, 2013. Go to original source...
  36. Yang, F., Wang, Y., Miao, L.F.: Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes. - Physiol. Plant. 139: 388-400, 2010. Go to original source...
  37. Yemm, E.W., Willis, A.J.: The estimation of carbohydrates in plant extracts by anthrone. - Biochem. J. 57: 508-514, 1954. Go to original source...
  38. Zhu, J.K.: Regulation of ion homeostasis under salt stress. - Curr. Opin. Plant Biol. 6: 441-445, 2003. Go to original source...