biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 65:333-341, 2021 | DOI: 10.32615/bp.2021.048

Immunogold-labelling localization of chlorophyllase-2 at different developmental stages of Pachira macrocarpa leaves

T.C. LEE1, 4, K.H. LIN2, M.Y. HUANG3, *, C.-M. YANG4, *
1 Anxi College of Tea Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2 Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
3 Department of Life Sciences and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 40227, Taiwan
4 Biodiversity Research Center, Academia Sinica, Taipei 11115, Taiwan

Chlorophyllases (Chlases) are housekeeping proteins in plant cells. The dephytylating enzymes can catalyze chlorophyll (Chl) to form chlorophyllide, but the distribution of Chlases in plant cells is still an interesting debate. Previously, we showed that PmCLH2 was a nuclear-encoded gene, and PmCLH2 protein was located in cytosol and chloroplasts of Pachira macrocarpa (Pm). In this study, the antibody of PmCLH2 was made and used by the immunogold-labelling technique to detect the localization of Chlase of Pm leaves at four developmental stages (young, mature, yellowing, and senescent). The transmission electron microscopy results show that Chlases were comprehensively found in parts of the chloroplast, such as the inner membrane of the envelope, grana, and the thylakoid membrane as well as in cytosol, and vacuoles at young, mature, and yellowing stages of Pm leaves, but not in the cell wall, plasma membrane, mitochondria, and nucleus. In short, PmCLH2 was mainly detected in vacuoles at the senescent stage, but a few were found in the chloroplasts. A pathway is proposed to explain the birth and death of Chl, Chlase, and chloroplasts in higher plants.

Keywords: chlorophyllase, chloroplast, immunogold-labelling, Pachira macrocarpa, senescence, transmission electron microscopy.

Received: May 23, 2021; Revised: July 16, 2021; Accepted: August 8, 2021; Published online: December 21, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
LEE, T.C., LIN, K.H., HUANG, M.Y., & YANG, C.-M. (2021). Immunogold-labelling localization of chlorophyllase-2 at different developmental stages of Pachira macrocarpa leaves. Biologia plantarum65, Article 333-341. https://doi.org/10.32615/bp.2021.048
Download citation

Supplementary files

Download file6732_Lee_Suppl.pdf

File size: 555.29 kB

References

  1. Alonso, L., Van Wittenberghe, S., Amorós-López, J., Vila-Francés, J., Gómez-Chova, L., Moreno, J.: Diurnal cycle relationships between passive fluorescence, PRI and NPQ of vegetation in a controlled stress experiment. - Remote Sens. 9: 770, 2017. Go to original source...
  2. Amir-Shapira, D., Goldschmidt, E.E., Altman, A.: Chlorophyll catabolism in senescing plant tissues: in vivo breakdown intermediates suggest different degradative pathways for citrus fruit and parsley leaves. - Proc. nat. Acad. Sci. USA 84: 1901-1905, 1987. Go to original source...
  3. Avila-Ospina, L., Moison, M., Yoshimoto, K., Masclaux-Daubresse, C.: Autophagy, plant senescence, and nutrient recycling. - J. exp. Bot. 65: 3799-3811, 2014. Go to original source...
  4. Azoulay-Shemer, T., Harpaz-Saad, S., Belausov, E., Lovat, N., Krokhin, O., Spicer, V., Standing, K.G., Goldschmidt, E.E., Eyal, Y.: Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: a study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization. - Plant Physiol. 148: 108-118, 2008. Go to original source...
  5. Azoulay-Shemer, T., Harpaz-Saad, S., Cohen-Peer, R., Mett, A., Spicer, V., Lovat, N., Krokhin, O., Brand, A., Gidoni, D., Standing, K.G., Goldschmidt, E.E., Eyal, Y.: Dual N- and C-terminal processing of citrus chlorophyllase precursor within the plastid membranes leads to the mature enzyme. - Plant Cell Physiol. 52: 70-83, 2011. Go to original source...
  6. Bénard, C., Gutier, H., Bourgaud, F., Grasselly, F., Navez, B., Caris-Veurat, C., Weiss, M., Gènard, M.: Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. - J. Agr. Food Chem.: 57: 4112-412, 2009. Go to original source...
  7. Burry, R.W., Vandré, D.D., Hayes, D.M.: Silver enhancement of gold antibody probes in pre-embedding electron microscopic immunocytochemistry. - J. Histochem. Cytochem. 40: 1849-1816, 1992. Go to original source...
  8. Cerovic, Z.G., Masdoumier, G., NaÏma, B.G., Latouche, G.: A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. - Physiol. Plant. 146: 251-260, 2012. Go to original source...
  9. Chen, M.C.-M., Yang, J.-H., Liu, C.-H., Lin, K.-H., Yang, C.-M.: Molecular, structural, and phylogenetic characterization of two chlorophyllase isoforms in Pachira macrocarpa. - Plant Syst. Evol. 300: 633-643, 2014. Go to original source...
  10. Chen, M.C.-M., Chao, P.Y., Huang, M.Y., Yang, J.H., Yang, Z.W., Lin, K.H., Yang, C.M.: Chlorophyllase activity in green and non-green tissues of variegated plants. - S. Afr. J. Bot. 81: 44-49, 2012. Go to original source...
  11. Gamon, J.A., Peñuelas, J., Field, C.B.: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. - Remote Sens. Environ. 44: 35-44, 1992. Go to original source...
  12. Heimler, D., Romani, A., Ieri, F.: Plant polyphenol content, soil fertilization and agricultural management: a review. - Eur. Food Res. Technol. 243: 1107-1115, 2017. Go to original source...
  13. Humbeck, K., Quast, S., Krupinska, K.: Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. - Plant Cell Environ. 19: 337-344, 1996. Go to original source...
  14. Hörtensteiner, S.: Chlorophyll breakdown in higher plants and algae. - Cell Mol. Life Sci. 56: 330-347, 1999. Go to original source...
  15. Hörtensteiner, S.: Chlorophyll degradation during senescence. - Annu. Rev. Plant Biol. 57: 55-77, 2006.rg Go to original source...
  16. Hörtensteiner, S., Krautler B.: Chlorophyll breakdown in higher plants. - Biochim. biophys. Acta 1807: 977-988, 2011. Go to original source...
  17. Hu, X., Makita, S., Schelbert, S., Sano, S., Ochiai, M., Tsuchiya, T., Hasegawa, S.F., Hörtensteiner, S., Tanaka, A., Tanaka, R.: Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores. - Plant Physiol. 167: 660-670, 2015. Go to original source...
  18. Ishida, H., Izumi, M., Wada, S., Makino, A.: Roles of autophagy in chloroplast recycling. - Biochim. biophys. Acta 1837: 512-521, 2014. Go to original source...
  19. Izumi, M., Ishida, H., Nakamura, S., Hidema, J.: Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. - Plant Cell 29: 377-394, 2017. Go to original source...
  20. Jaakola, L.: New insights into the regulation of anthocyanin biosynthesis in fruits. - Trends Plant Sci. 18: 477-483, 2013. Go to original source...
  21. Jacob-Wilk, D., Holland, D., Goldschmidt, E.E., Riov, J., Eyal, Y.: Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated citrus fruit and its regulation during development. - Plant J. 20: 653-661, 1999. Go to original source...
  22. Kariola, T., Brader, G., Li, J., Palva, E.T.: Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. - Plant Cell 17: 282-294, 2005. Go to original source...
  23. Kermasha, S., Khalyfa, A., Marsot, P., Alli, I., Fournier, R.: Biomass production, purification, and characterization of chlorophyllase from alga (Phaeodactylum tricornutum). - Appl. Biochem. Biotechnol. 15: 142-159, 1992.
  24. Khalyfa, S., Kermasha, P., Marsot, M., Goetghebeur, M.: Purification and characterization of chlorophyllase from alga Phaeodactylum tricornutum by preparative native electrophoresis. - Appl. Biochem. Biotechnol. 53: 11-27, 1995. Go to original source...
  25. Lee, T.C., Hsu, B.D.: Disintegration of the cells of siphonous green alga Codium edule (Bryopsidales, Chlorophyta) under mild heat stress. - J. Phycol. 45: 348-356, 2009. Go to original source...
  26. Lin, W., Wittenbach, V.A.: Subcellular localization of proteases in wheat and corn mesophyll protoplasts. - Plant Physiol. 67: 969-972, 1981. Go to original source...
  27. Matile, P., Hörtensteiner, S., Thomas, H.: Chlorophyll degradation. - Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 67-95, 1999. Go to original source...
  28. Matile, P., Schellenberg, M., Vicentini, F.: Localization of chlorophyllase in the chloroplast envelope. - Planta 201: 96-99, 1997. Go to original source...
  29. Nakamura, S., Sakamoto, J., Hidema, W., Ishida, H., Izumi, M.: Selective elimination of membrane-damaged chloroplasts via microautophagy. - Plant Physiol. 177: 1007-1026, 2018. Go to original source...
  30. Okazawa, A., Tango, L., Itoh, Y., Fukusaki, E., Kobayashi, A.: Characterization and subcellular localization of chlorophyllase from Ginkgo biloba. - Z. Naturforsch. C 61c: 111-117, 2006. Go to original source...
  31. Peñuelas, J., Filella, I., Gamon, J.: Assessment of photosynthetic radiation use efficiency with spectral reflectance. - New Phytol. 131: 291-296, 1995. Go to original source...
  32. Schenk, N., Schelbert, S., Kanwischer, M., Goldschmidt, E.E., Dormann, P., Hörtensteiner, S.: The chlorophyllases tCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. - FEBS Lett. 581: 5517-5525, 2007. Go to original source...
  33. Shimoda, Y., Ito, H., Tanaka, A.: Arabidopsis STAY-GREEN, Mendel's green cotyledon gene, encodes magnesium-dechelatase. - Plant Cell 28: 2147-2160, 2016. Go to original source...
  34. Takamiya, K.I., Tsuchiya, T., Ohta, H.: Degradation pathway(s) of chlorophyll: what has gene cloning revealed? - Trends Plant Sci. 5: 426-431, 2000. Go to original source...
  35. Takahashi, S., Murata, N.: How do environmental stresses accelerate photoinhibition? - Trends Plant Sci. 13: 178-182, 2008. Go to original source...
  36. Tang, L., Okazawa, A., Fukusaki, E., Kobayashi, A.: Removal of magnesium by Mg-dechelatase is a major step in the chlorophyll-degrading pathway in Ginkgo biloba in the process of autumnal tints. - Z. Naturforsch. C. 55c: 923-926, 2000. Go to original source...
  37. Tian, Y.N., Zhong, R.H., Wei, J.B., Luo, H.H., Eyal, Y., Jin, H.L., Wu, L.J, Liang, K.Y., Li, Y.M., Chen, S.Z., Zhang, Z.Q., Pang, X.Q.: Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair. - Mol. Plants 14: 1149-1167, 2021. Go to original source...
  38. Terpstra, W.: Identification of chlorophyllase as a glycoprotein. - FEBS Lett. 126: 231-235, 1981. Go to original source...
  39. Terpstra, W., Lambers, J.W.J., Levine, Y.K.: Studies on chlorophyllase. II. Interaction of the enzyme with concanavalin A and with N, N-dicyclohexylcarbodiimide. - Photobiochem. Photobiophys. 11: 249-255, 1986.
  40. Wittenbach, V.A., Lin, W., Hebert R.R.: Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. - Plant Physiol. 69: 98-102, 1982. Go to original source...