biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 65:351-358, 2021 | DOI: 10.32615/bp.2021.054

Cloning and functional characterization of a terpene synthase gene AlTPS1 from Atractylodes lancea

L.N. CHEN1, Y. H. LI1, X. HUANG1, 2, J. DENG1, C. L. QU1, X. Q. ZHANG1, 2, B.S. HUANG1, Y. ZHANG3, L. GONG1, 2, *, K. YU1, 2, *
1 College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
2 Hubei Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Hubei University of Chinese Medicine, Wuhan 430060, P.R. China
3 National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China

Atractylodes lancea (Thunb.) DC has been used widely as a medicinal herb for centuries and is now being used to treat COVID-19 pneumonia. Terpenoids are thought to be its main pharmacologically active constituents. However, their biosynthesis remains uncharacterized in this species. In this study, the terpene synthase gene AlTPS1 was cloned and functionally characterized. We found that AlTPS1 was a bifunctional enzyme that catalyzed the conversion of farnesyl diphosphate to nerolidol and geranyl diphosphate to linalool in vitro. However, it functioned only in the nerolidol production in vivo by transient expression of the AlTPS1 gene in Nicotiana benthamiana leaves maybe due to subcellular compartmentalization of the AlTPS1 in the cytosol. Furthermore, AlTPS1 was highly expressed in leaves, considered to be the sites of nerolidol synthesis. This study is the first in which the cloning and expression of the AlTPS1 gene from A. lancea were analyzed, and it has provided new insights into terpene biosynthesis in A. lancea.

Keywords: Atractylodes lancea, linalool, nerolidol, Nicotiana benthamiana, subcellular compartmentalization, terpene synthase.

Received: January 28, 2021; Revised: August 7, 2021; Accepted: September 1, 2021; Published online: December 29, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
CHEN, L.N., LI, Y.H., HUANG, X., DENG, J., QU, C.L., ZHANG, X.Q., ... YU, K. (2021). Cloning and functional characterization of a terpene synthase gene AlTPS1 from Atractylodes lancea . Biologia plantarum65, Article 351-358. https://doi.org/10.32615/bp.2021.054
Download citation

Supplementary files

Download file6678_Chen_Suppl.pdf

File size: 306.07 kB

References

  1. Aubourg, S., Lecharny, A., Bohlmann, J.: Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. - Mol. Genet. Genomics 267: 730-745, 2002. Go to original source...
  2. Chen, F., Tholl, D., Bohlmann, J., Pichersk, E.: The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. - Plant J. 66: 212-229, 2011. Go to original source...
  3. Chen, H., Köllner, T.G, Li, G., Wei, G., Chen, X., Zeng, D., Qian, Q., Chen, F.: Combinatorial evolution of a terpene synthase gene cluster explains terpene variations in Oryza. - Plant Physiol. 182: 480-492, 2020. Go to original source...
  4. Dudareva, N., Martin, D., Kish, C.M., Kolosova, N., Gorenstein, N., Fäldt, J., Miller, B., Bohlmann, J.: (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. - Plant Cell 15: 1227-1241, 2003. Go to original source...
  5. Farajnia, S., Ghorbanzadeh, V., Dariushnejad, H.: Effect of molecular chaperone on the soluble expression of recombinant Fab fragment in E. coli. - Int. J. Peptide Res. Therapeutics 26: 251-258, 2020. Go to original source...
  6. Falara, V., Akhtar, T.A., Nguyen, T.T., Spyropoulou, E.A., Bleeker, P.M., Schauvinhold, I., Matsuba, Y., Bonini, M.E., Schilmiller, A.L., Last, R.L., Schuurink, R.C., Pichersky, E.: The tomato terpene synthase gene family. - Plant Physiol. 157: 770-789, 2011. Go to original source...
  7. Gao, F., Liu, B., Li, M., Gao, X., Fang, Q., Liu, C., Ding, H., Wang, L., Gao, X.: Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia × hybrida. - J. exp. Bot. 69: 4249-4265, 2018. Go to original source...
  8. Gu, Y.H., Feng, X., Xia, B.: Dynamic change of essential oil content and increment in different organs of Atractylodes lancea. - J. Plant Resour. Environ. 16: 24-28, 42, 2007.
  9. Hemmerlin, A., Harwood, J.L., Bach, T.J.: A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? - Progr. Lipid Res. 51: 95-148, 2012. Go to original source...
  10. Herde, M., Gärtner, K., Köllner, T.G., Fode, B., Boland, W., Gershenzon, J., Gatz, C., Tholl, D.: Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. - Plant Cell 20: 1152-1168, 2018. Go to original source...
  11. Jun, X., Fu, P., Lei, Y., Cheng, P.: Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.) DC. - Chin. Med. 13: 59, 2018. Go to original source...
  12. Koonrungsesomboon, N., Na-Bangchang, K., Karbwang, J.: Therapeutic potential and pharmacological activities of Atractylodes lancea (Thunb.) DC. - Asian. Pac. J. trop. Med. 7: 421-8, 2014. Go to original source...
  13. Kwon, S.B., Ryu, K., Son, A., Jeong, H., Lim, K.H., Kim, K.H., Seong, B.L., Choi, S. I.: Conversion of a soluble protein into a potent chaperone in vivo. - Sci. Rep 9: 2735, 2019. Go to original source...
  14. Martin, D.M., Aubourg, S., Schouwey, M.B., Daviet, L., Schalk, M., Toub, O., Lund, S.T., Bohlmann, J.: Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. - BMC Plant Biol. 10: 226, 2010. Go to original source...
  15. Marrero, P.F., Poulter, C., Edwards, P.A.: Effects of site-directed mutagenesis of the highly conserved aspartate residues in domain II of farnesyl diphosphate synthase activity. - J. biol. Chem. 267: 21873-21878, 1992. Go to original source...
  16. Nagegowda, D.A., Gutensohn, M., Wilkerson, C.G., Dudareva, N.: Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. - Plant J. 55: 224-239, 2008. Go to original source...
  17. Nagegowda, D.A: Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. - FEBS. Lett. 584: 2965-2973, 2010. Go to original source...
  18. Pichersky, E., Raguso, R.A.: Why do plants produce so many terpenoid compounds. - New Phytol. 220: 692-702, 2018. Go to original source...
  19. Pyne, M.E., Narcross, L., Martin, V.J.: Engineering plant secondary metabolism in microbial systems. - Plant Physiol. 179: 844-861, 2019. Go to original source...
  20. Vattekkatte, A., Garms, S., Brandt, W., Boland, W.: Enhanced structural diversity in terpenoid. biosynthesis: enzymes, substrates and cofactors. - Org. Biomol. Chem. 163: 348-362, 2018. Go to original source...
  21. Williams, D.C., McGarvey, D.J., Katahira, E.J., Croteau, R.: Truncation of limonene synthase preprotein provides a fully active 'pseudomature' form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. - Biochemistry 37: 12213-12220, 1998. Go to original source...
  22. Zhu, B.Q., Cai, J., Wang, Z.Q., Xu, X.Q., Duan, C.Q., Pan, Q.H.: Identification of a plastid-localized bifunctional nerolidol/linalool synthase in relation to linalool biosynthesis in young grape berries. - Int. J. mol. Sci. 5: 21992-22010, 2014. Go to original source...